<|lI!

IMS/ESA

Utilities Reference: System

Version 6

SC26-8770-05






<|lI!

IMS/ESA

Utilities Reference: System

Version 6

SC26-8770-05



Note
Before using this information and the product it supports, be sure to read the general information

under [Natices” on page Xiil.

Sixth Edition (July 2000) (Softcopy only)

This edition replaces and makes obsolete the previous edition, SC26—8770-04. This edition is available in softcopy
format only. The technical changes for this edition are summarized under LSummary of Changes” on page xxiil. The
technical changes are indicated by a vertical bar to the left of a change.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation, BWE/H3
P.O. Box 49023

San Jose, CA, 95161-9023
U.S.A.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1974, 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Notices . . . e e i
Programming Interface Informat|0n D (|
Trademarks . . . . . . . . . . . L L L L. L. L. ..o LoV
Product Names. . . . . . . . . . . . . . . . . . . . . ... XV
Preface . . . e Y
Organization of Thrs Book e V)
Prerequisite Knowledge. . . . D 1)
Organization of Utility Descrrptrons e
Syntax Diagrams . . . D ]
CICS, DBCTL, and DCCTL D 4
Change Indicators . . . D ()4
Supported Environments for Varrous Utrlrtres D ()4
Summary of Changes . . . e e e X
Changes to The Current Edition of Thrs Book for V6 C e e XX
Changes to This Book forVé . . . . . . . . . . . . . . . . . . . xxii
Library Changes for Version 6. . . . . . . . . . . . . . . . . . . Xxi
Part 1. Generation Utilities .1
Chapter 1. Database Description (DBD) Generation. .5
Information Specified in DBD Generation. . 6
DBD Generation for Database Types . . 6
HSAM DBD Generation . . 6
GSAM DBD Generation . .7
HISAM DBD Generation . .7
HDAM DBD Generation . . 8
HIDAM DBD Generation . . 8
MSDB DBD Generation . . 9
DEDB DBD Generation . . 9
Index DBD Generation C e e e e e oo
Logical DBD Generation . . . .. . . .10
DBD Generation Input Record Structure (Except for DEDB DBDs) .. . . .10
DEDB DBD Generation Input Record Structure . . . . . . . . . . . .12
DBD Generation Coding Conventions . . . . . . . . . . . . . . .13
DBDGEN Procedure. . . . . . . . . . . . . . . . . . . . . . .13
PROC Statement . . . . . . . . . . . . . . . . . . . . . . .13
JCL Parameters . . . . . . . . . . . . . . . . . . . ... .14
DBDGEN Statements . . . . . . . . . . . . . . . . . . . . . .15
DBD Statement. . . . T 4
DBD Statement Parameter Descrrptrons e e e e 22
DATASET Statements . . . e e e 029
DATASET Statement Parameter Descnptron R 7
Data Sets in IMS Data Set Groups . . . . . . . . . . . . . . . .42
AREA Statement . . . e e e . . ... .. ... .43
AREA Statement Parameter Descrrptron T ¥
SEGM Statement . . . e 153
SEGM Statement Parameter Descrrptron X
LCHILD Statement . . . e Y4
LCHILD Statement Parameter Descnptron e 4 0
FIELD Statement . . . Y 4
FIELD Statement Parameter Descnptron T

© Copyright IBM Corp. 1974, 2000 i



XDFLD Statement. . . . . e 4

XDFLD Statement Parameter Descnptlon C e e e e ... .. .. .80
DBDGEN, FINISH, and END Statements . . . . . . . . . . . . . .82
Output . . . . N & 724
Control Statement Llstlng e < 4
DBD Generation Error Conditons . . . . . . . . . . . . . . . . .86
Examples. . . . . . . . . . .86
Examples without Secondary Index or Logrcal Relat|onsh|ps . . . . . . .086
Summary of Physical Database Description Examples . . . . . . . . . 96
Examples with Logical Relationships. . . . . . . . . . . . . . . .96
Examples with Secondary Indexes . . . . . . . . . . . . . . . .101
Chapter 2. Program Specification Block (PSB) Generation . . . . . . . 109
Input and Output. . . . . . . . . . . . . . . . . . . . . . . .10
PSBGEN Procedure . . . . . . . . . . . . . . . . . . ... .1
PROC Statement. . . . . . . . . . . . . . . . . . . . ... 1
StepC . . . . . . Lo s s s s s o112
StepL. . . A 24
Invoking the Procedure T 4
Utility Control Statements . . . . . . . . . . . . . . . . . . . .12
Alternate PCB Statement. . . I I
DL/l or Fast Path Database PCB Statement e e . . . . . . . . . . 115
GSAM PCB Statement . . . . . . . . . . . . . . . . . . . .125
SENSEG Statement . . . . . . . . . . . . . . . . . . . . .126
SENFLD Statement. . . . . . . . . . . . . . . . . . . . . .128
PSBGEN Statement . . . . . . . . . . . . . . . . . . . . .129
END Statement . . . e 7
Output Messages and Statlsncs e 7:
Examples . . . P RC 7
PSB Generation Examples Coe T RC 7
Field Level Sensitivity PSB Generat|on Example .. . . . . . . . . .136
Fast Path PSB Generation Examples . . . . . . . . . . . . . . .137
Additional PSB Generation Examples . . . P 1)
Examples of a Sample Problem with an Appllcatlon Database P |
Example of a Shared Secondary Index . . . . . . . . . . . . . . 145
Chapter 3. Application Control Blocks Maintenance Utility . . . . . . . 149
Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . .150
Input and Output. . . . . . . . . . . . . . . . . . . . . . . .150
ACBGEN Procedure . . . . . . . . . . . . . . . . . . . . .15
EXEC Statement. . . . . . . . . . . . . . . . . . . . . . .152
DD Statements . . . 154
DFSACBCP Control Statement Y £ S XC
Utility Control Statements . . . e . . . . . . . . . . .153
Managing Dynamic Option (DOPT) PSBs . e . . . . . . . . . . .156
Error Processing. . . . . e 1
Examples . . . . . . . . . . . . . . . . . . . . . . . . . .157
Examplel . . . . . . . . . . . . . . . . . . . . . . .. .157
Example2 . . . . . . . . . . . . . . . . . . . . . . .. .157
Example3 . . . . . . . . . . . . . . . . . . . . . . .. .157
Part 2. Service Utilities . . . . . . . . . . . . . . . ... ... ... ...159
Chapter 4. Dynamic Allocation Macro (DFSMDA). . . . . . . . . . .161
Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . .163
Input and Qutput. . . . . . . . . . . . . . . . . . . . . . . .163

iV IMS/ESA V6 Utilities Ref: System



IMSDALOC Procedure

PROC Statement .

JCL Parameter Description .

Step ASSEM .

Step BLDMBR

Step LNKEDT .

Invoking the Procedure
Macro Statements .
Examples

Example 1 .

Example 2 .

Example 3 .

Example 4 .

Example 5 .

Chapter 5. Security Maintenance Ut|||ty (DFSISMPO)

Input and Output Flow.
Restrictions.
Security Options .
LTERM Security .
Password Security .
Transaction Command Securlty
IMS Resource Access Security
Sign-on Verification Security
Resource Access Control Facility (RACF)
Command Authorization Exit Routine
IMS Application Resource Access Security .
SECURITY Procedure.
PROC Statement .
JCL Parameter Description .
Step S EXEC Statement .
DD Statements
Step C
Step L
Invoking the Procedure
Utility Control Statements
Output .
Security- Status Reports .
Examples . .
Example 1 .
Example 2 .
Example 3 .
Example 4 .
Example 5 .
Example 6 .
Example 7 .
Example 8 .

Chapter 6. Online Change Utlllty (DFSUOCUO).

Restrictions.
INITMOD Procedure
PROC Statement .
DFSMREC Control Statement
OLCUTL Procedure.
PROC Statement
EXEC Statement.

. 164
. 164
. 164
. 165
. 165
. 165
. 165
. 166
. 171
. 171
. 172
. 172
. 172
. 173

. 175
. 176
. 176
. 177
. 177
. 177
. 177
. 178
. 178
. 178
. 178
. 179
. 179
. 180
. 181
. 181
. 182
. 182
. 183
. 183
. 183
. 185
. 186
. 186
. 186
. 186
. 187
. 187
. 188
. 189
. 189
. 189

. 191
. 191
. 192
. 192
. 193
. 194
. 194
. 195

Contents

\Y



DD Statements . 195
Invoking the Procedure . 196
Chapter 7. Dynamlc SvC Ut|||ty (DFSUSVCO) . 199
Restrictions. . . 199
Input and Output. . 199
Error Processing . . 199
JCL Requirements . . 200
DD Statements . 200
Example . . 200
Part 3. Log Utilities . . 203
Chapter 8. Log Archive Utility (DFSUARCO) . . 205
OLDS Archive. . Coe . 205
Batch DASD Log Data Set Archrve . . 206
Optional Functions . . 206
Creating an RLDS (Recovery Log Data Set) . 206
Omitting Log Records on SLDS . .o . 206
Copying Log Records into User Data Sets . 207
Specifying User Exit Routines . . 207
Specifying Forced End of Volume (EOV) . 207
Utility Input . e . 207
OLDS Input. . 207
SLDS Input. . 208
Utility Output . . 208
JCL Requirements . . 209
DD Statements . 210
Utility Control Statements 211
SLDS Statement. . 212
COPY Statement . 212
EXIT Statement . . 215
Error Processing. . 215
Examples . 215
Example 1 . . 215
Example 2 . . 216
Chapter 9. Log Merge Ut|||ty (DFSLTMGO) . 217
Restrictions. . . 217
Input and Output. .o . 217
Controlling the Log Merge . 217
Control Statement Format . 217
JCL Requirements . . 219
DD Statements . 219
Chapter 10. Log Recovery Ut|||ty (DFSULTRO) . 221
OLDS Recovery . . . 222
SLDS Recovery . . 222
Input . . 222
Single Log Input . 222
Dual Log Input . 223
Output . 224
Interim Log Error ID Record . 224
Error Block Listing (SYSPRINT) . . 225
REP Mode Verification Messages . 227
Dump of Data Record . . 227

Vi

IMS/ESA V6 Utilities Ref: System



Active Region Messages. . . . . . . . . . . . . . . . . . . .228

JCL Requirements . . . . . . . . . . . . . . . . . . . . . . .Z228
DD Statements . . . . . . . . . . . . . . . . . . ... .229
Utility Control Statements . . . ... .. 0231
CLS Mode—Close an OLDS from the WADS or NEXT OLDS .. .. 0231
DUP Mode—Recover an OLDS or SLDS (Create an Interim Log) . . . . . 232
REP Mode—Recover an OLDS or SLDS (Create a New Log) . . . . . . 232
PSB Mode—Print “Active PSBs”" Report . . . . . . . . . . . . . . 233
Error Processing. . . . . . . . . . . . . . . . . . . . . .. .23
Examples . . . . . . . . . . . . . . . . . ... ... .. .23
Examplel . . . . . . . . . . . . . . .. ... .. 24
Example2 . . . . . . . . . . . . . . . . . . . . . . .. .23
Example3 . . . . . . . . . . . . . . . . . . . . . . .. .23
Example4 . . . . . . . . . . . . . . . . . . . . .. . . .236
Example5 . . . . . . . . . . . . . . . . . . . . . . . . .236
Example6 . . . . . . . . . . . . . . . . . . . . . ... .237
Example 7 . . . . . . . . . . . . . . . . . . . . .. ... 237
Example8 . . . . . . . . . . . . . . . . . . . . .. . . .238
Example9 . . . . . . . . . . . . . . . . . . . . .. . . .238
Part 4. Analysis Utilities and Reports . . . . . . . . . . . . . . ... ...241
Chapter 11. IMS-Monitor Report Print Utility (DFSUTR20) . . . . . . . 245
Restrictions. . . . . . . . . . . . . . . . . . . . . . . .. .245
Inputand Qutput. . . . . . . . . . . . . . . . . . . . . . . .245
JCL Requirements . . . . . . . . . . . . . . . . . . . . . . .24
DD Statements . . . i 16}
Analysis Control Data Set 2 1)
Specifying Distribution Redefiniton . . . . . . . . . . . . . . . . 246
Example. . . . . . . . .. L oL 0L oL o247
Chapter 12. File Select and Formatting Print Ut|||ty (DFSERAlO). ... . 249
Input and Qutput. . . . . . . . . . . . ... .. 249
JCL Requirements . . . . . . . . . . . . . . . . . . . . .. .250
DD Statements . . . . . . . . . . . . . . . . . . . . . . .250
Utility Control Statements . . . . . . . . . . . . . . . . . . . .251
CONTROL Statement. . . . . . . . . . . . . . . . . . . . .251
OPTION Statement. . . . . . . . . . . . . . . . . . . . . .253
Keywords . . . . . . . . . . . . . . . . . . . . . ... .25
END Statement . . . . . . . . . . . . . . . . . . . . . . .25
COMMENTS Statement . . . . . . . . . . . . . . . . . . . .257
Examples . . . . . . . . . . . . . . . . . . . . . .. .. .257
Examplel . . . . . . . . . . . . . . . . . . . . . . . . .258
Example2 . . . . . . . . . . . . . . . . . . . . . . . . .258
Example3 . . . . . . . . . . . . . . . . . . . . . ... .25
Example4 . . . . . . . . . . . . . . . . . . . . . ... .260
Example5 . . . . . . . . . . . . . . . . . . . . . . . . .260
Example6 . . . . . . . . . . . . . . . . . . . . .. .. .261
Example7 . . . . . . . . . . . . . . . . . . . . . ... .262
Example8 . . . . . . . . . . . . . . . . . . . . . ... .262
Example 9 . . e . . . . . . . . . .263
Record Format and Prlnt Module (DFSERASO) . e . . . . . . . . . .263
The Deadlock Report . . . . . . . . . . . . . . . . . . . . .263
Utility Control Statements . . . . . . 269
Program lIsolation Trace Record Format and Prlnt Module (DFSERA40) .. . 270
DFSERAA40 Utility Control Statements . . . . . . . . . . . . . . . 270

Contents Vi



Viii

Output

DL/l Call Image Capture Module (DFSERA50)
Utility Control Statements

IMS Trace Table Record Format and Prlnt Module (DFSERA60)
Utility Control Statements e

Enhanced Select Exit Routine (DFSERA?O)

Examples of Using the Enhanced Select Exit Routine (DFSERA?O)
Examplel . . . . . . .
Example 2 .

Example 3 .
Example 4 .
Example 5 .
Example 6 .
Example 7 .
Example 8 .
Example 9 .

Example 10

Chapter 13. Fast Path Log AnaIyS|s Utrlrty (DBFULTAO)
Restrictions.
Input and Output.

Format of Total Traffic and Exceptlon Trafflc Data Sets
Detail-Listing-of-Exception-Transactions Report

Summary-of-Exception-Detail-by-Transaction-Code (for IFP Reglons) Report

Overall-Summary-of-Transit-Times-by-Transaction-Code (for IFP-Regions)
Report.
Overall Summary of Resource Usage and Contentrons for AII Transactron
Codes and PSBs Report .
Summary-of-Region-Occupancy Report
Summary-of-VSO-Activity Report .
Recapitulation-of-the-Analysis Report .
JCL Requirements .
DD Statements
Utility Control Statements
Transit Time Exception Specn‘rcatron
Analysis Parameter Statement Formats
Starting Date Specification (STARTDAY) .
Ending Date Specification (ENDDAY) .
Starting Time Specification (START)
Ending Time Specification (END) .
Exceptional Transit Time Specification (TT) . .
Not Message-Driven Option (NON-MESSAGE or NOT-MESSAGE)
Detail-Listing-of-Exception-Transactions Report Size Limitation
(MAXDETAIL) .
DL/I Call Specification (CALLS)
Buffer Use Specification (BUFFER) .
Data Space Use Specification (VSO)
Printed Page Line Count Specification (LINECNT)
Error Processing . o o

Chapter 14. Offline Dump Formatter Ut|||ty (DFSOFMDO) .
Interactive Dump Formatter . . e e
Migration Considerations .
Restrictions.
Environments .

IMS Online Enwronments

IMS/ESA V6 Utilities Ref: System

. 271
. 273
. 273
. 273
. 273
. 274
. 276
. 276
. 276
. 276
. 276
. 277
. 277
. 277
. 277
. 277
. 277

. 279
. 280
. 280
. 281
. 282

287

. 288

. 288
. 290
. 291
. 291
. 293
. 293
. 294
. 294
. 295
. 295
. 295
. 295
. 296
. 296
. 296

. 297
. 297
. 297
. 297
. 298
. 298

. 301
. 301
. 302
. 302
. 302
. 302



IMS Batch Environments. . . . . . . . . . . . . . . . . . . .303

Input and Output. . . . . . . . . . . . . . . . . . . . . . . .303
IPCS Execution . . . . . . . . . . . . . . . . . . . . . . . .303
DD Statements . . . . . . . . . . . . . . . . . . . . . . .304
Chapter 15. Log Transaction AnaIyS|s Ut|||ty (DFSILTAO) .. . . . . .307
Restrictions. . . . . < 0 Y
Inputand Qutput. . . . . . . . . . . . . . . . . . . . . . . .308
JCL Requirements . . . . . . . . . . . . . . . . . . . . . . .308
DD Statements . . . . . . . . . . . . . . . . . . . . . . .310
Chapter 16. Statistical AnaIyS|s Ut|||ty (DFSISTSO) Coe . . .. ... 313
Restrictions. . . . . . . . . .o . . . . . . . .313
Input and Output. . . . . . . . . . . . . . . . . . . . . . . .313
Log Records . . . N 7
SORT and EDIT PASSl (DFSISTSO) <
EDIT PASS2 (DFSIST20) . . . . . . . . . . . . . . . . . . .317
Report Writer (DFSIST30) . . . e N 4
Message Select and Copy or List (DFSIST40) e N K
Examples . . . . T K
Report Writer (DFSISTSO) Output Co. .. . . . . . .319
Message Select and Copy or List (DFSIST40) Output Coe . .. ... 322
JCL Requirements . . . .. . . . . . . .323
DD Statements . . . . . . . . . . . . . . . . . . . . . . .32
Utility Control Statements . . . e e ... L2328
Transaction Code Control Statement G 2
Symbolic Terminal Name Control Statement. . . . . . . . . . . . . 328
Hardware Terminal Address Control Statement. . . . . . . . . . . . 329
VTAM Terminal Name Control Statement. . . . . . . . . . . . . . 329
Time Control Statement . . . R vA®
Nonprintable Character Control Statement . 110
Part 5. Interpreting IMS Reports . . . . . . . . . . . ... ... ......33
Chapter 17. Interpreting IMS-Monitor Reports . . . . . . . . . . . . 335
Transaction Flow and IMS Monitor Events . . . . . . . . . . . . . . 335
IMS Monitor Trace Event Intervals . . . . . . . . . . . . . . . . . 338
Overview of IMS Monitor Reports . . . . . . . . . . . . . . . . .338
Sequence of Report Output. . . . . e e . . . . . . . . . . .2338
Units of Measure in IMS Monitor Reports e e 1e
Documenting the Monitoring Run. . . . R 1 1
Adding to the System-Configuration Report Data e e . . . ... ..o 340
Recording the Monitor Trace Interval . . . . . . . . . . . . . . . 340
Completing the Monitor Run Profile. . . . . . . . . . . . . . . . 340
Verifying IMS-Monitor Report Occurrences . . . . . . . . . . . . . 342
Monitoring Activity in Dependent Regions. . . . . . . . . . . . . . . 342
Detecting Database Processing Intent Conflicts . . . . . . . . . . . 346
Examining the Effects of Checkpoints . . . . . . . . . . . . . . . 346
Measuring Region Occupancy. . . . . . . . . . . . . . . .346
Monitoring Application Program Elapsed T|me Y v 4
Monitoring 1/O for Application Program DL/I Calls. . . . . . . . . . . . 349
Monitoring MFS Activity . . . . e . . ... .. . . . . . . .353
Monitoring Message Queue Handlmg P |
Detecting Checkpoint Effects . . . . . . . . . . . . . . . . . .35
Transaction-Queueing Report . . . . . . . . . . . . . . . . . .355
Monitoring Database Buffers . . . . . . . . . . . . . . . . . . . 356

Contents X



X

Monitoring Line Activity
Monitoring Message Handling EfflClency
IMS Internal Resource Usage .
Pool Space Failure .
Programs Experiencing Deadlock
IMS Latch Conflict .
Using Frequency Distributions from IMS Monltor Output
How to Get a Frequency Distribution Output
How Frequency Distribution Ranges Are Defined .
Interpreting Distribution Appendix Output .
Interpreting IMS Monitor MSC Reports.
Determining Cross-System Queuing
Assessing the Effect of Link Loading
Assessing Link Queuing Times
Extracting Multiple System Transaction Statlstlcs
Controlling the Log Merge
Interpreting the Transaction- AnaIyS|s Report

Chapter 18. Interpreting IMS Monitor Reports for DBCTL

IMS Monitor Trace Event Intervals
Overview of IMS Monitor Reports
Sequence of Report Output. .
Units of Measure in IMS Monitor Reports
Documenting the Monitoring Run. .
Adding to the System-Configuration Report Data
Recording the Monitor Trace Interval
Completing the Monitor Run Profile .
Verifying IMS-Monitor Report Occurrences .
Monitoring Activity in Dependent Regions.
Detecting Database Processing Intent Confllcts
Examining the Effects of Checkpoints .
Measuring Region Occupancy . .
Monitoring Application Program Elapsed T|me .
Monitoring 1/O for Application Program DL/l Calls .
Transaction-Queuing Report .o
Monitoring Database Buffers
IMS Internal Resource Usage .
Pool Space Failure .
Programs Experiencing Deadlock
IMS Latch Conflict .
Using Frequency Distributions from IMS Monltor Output
How to Get a Frequency Distribution Output
How Frequency Distribution Ranges Are Defined .
Interpreting Distribution Appendix Output .

Chapter 19. Interpreting IMS Monitor Reports for DCCTL

IMS Monitor Trace Event Intervals
Overview of IMS Monitor reports .
Sequence of Report Output.
Summary of IMS Monitor Reports in Output Sequence
Units of Measure in IMS Monitor Reports.
Documenting the Monitoring Run. .
Adding to the System-Configuration Report Data
Recording the Monitor Trace Interval
Completing the Monitor Run Profile .
Verifying IMS-Monitor Report Occurrences .

IMS/ESA V6 Utilities Ref: System

. 357
. 358
. 359
. 359
. 359
. 360
. 362
. 362
. 364
. 365
. 366
. 367
. 368
. 369
. 370
. 370
. 370

. 373
. 374
. 375
. 375
. 375
. 376
. 376
. 376
. 376
. 377
. 378
. 382
. 382
. 382
. 382
. 385
. 386
. 387
. 388
. 389
. 389
. 389
. 390
. 390
. 391
. 393

. 395
. 395
. 396
. 396
. 396
. 397
. 397
. 397
. 397
. 398
. 399



Monitoring Activity in Dependent Regions. . . . . . . . . . . . . . .39

Examining the Effects of Checkpoints . . . . . . . . . . . . . . .403
Measuring Region Occupancy. . . C e . . . . . . . . . . .403
Monitoring Application Program Elapsed T|me e e . . . . . . . . . . .403
Monitoring 1/O for Application Program DL/I Calls. . . . . . . . . . . . 406
Monitoring MFS Activity . . . -y 0
Monitoring Message Queue Handlrng 4 K0
Detecting Checkpoint Effects . . . . . . . . . . . . . . . . . .410
Transaction-Queuing Report . . . . . . . . . . . . . . . . . .41
Monitoring Line Activity . . . Y
Monitoring Message Handling Eff|C|ency 4 7
IMS Internal ResourceUsage . . . . . . . . . . . . . . . . . . .415
Pool Space Contention . . . . . . . . . . . . . . . . . . . .415
IMS Latch Conflict . . . . . . . . . . . . .415
Using Frequency Distributions from IMS Momtor Output e . . . . . . . 416
How to Get a Frequency Distribution OQutput . . . . . . . . . . . . 416
How Frequency Distribution Ranges Are Defined. . . . . . . . . . . 418
Interpreting Distribution Appendix OQutput . . . . . . . . . . . . . . 420
Interpreting IMS Monitor MSC Reports. . . . . . . . . . . . . . . .421
Determining Cross-System Queuing . . . . . . . . . . . . . . .421
Assessing the Effect of Link Loading . . . . . . . . . . . . . . .422
Assessing Link Queuing Times . . . Y
Extracting Multiple System Transaction Statlst|cs N e
Controlling the Log Merge . . . N 922
Interpreting the Transaction- Analysrs Report 2 92
Chapter 20. Interpreting //DFSSTAT Reports. . . . . . . . . . . . . 427
JCL Description . . . . . . . . . . . . . . . ... 427
Report Descriptions. . . . . . . . . . . . . . . . . . . . ..o 427
PST-Accounting Report . . . . . . . . . . . . . . . . . . . .A427
VSAM-Buffer-Pool Report . . . . . . . . . . . . . . . . . . .428
OSAM-Buffer-Pool Report . . . . Y 24
Sequential-Buffering-Summary Report X
Sequential-Buffering-Detail Report . . . . . . . . . . . . . . . . 433
Chapter 21. Interpreting Statistical-Analysis and Log-Transaction Reports 443
Statistical Analysis Utility Reports. . . . . . . . . . . . . . . . . .443
Calculating Transaction Loads. . . . . . . . . . . . . . . . . . .444
Assessing Program-to-Program Traffic. . . . . . . . . . . . . . . 446
Obtaining Counts of Unsent Messages . . . . . . . . . . . . . . 446
Auditing Critical Transactions . . . e ¥
Log Transaction Analysis Utility Reports e ¥ S
Examining Scheduling Activity . . . . . . . . . . . . . . . . . . .449
IMS Accounting Information. . . . e LSy
Using the Application-Accounting Report e e e . . . ... ... . 452
Using IMS Transaction Profiles . . . . . . . . . . . . . . . . .42
Part 6. Appendixes . . . . . . . . . . . . . . . . . . . . .. ... ...A453
Bibliography . . . 1)
IMS/ESA Version 6 Lrbrary 1)
Index . . . . . . . . . . . . . . . . . . . .. . . ... . . .457

Contents X



Xil  IMS/ESA V6 Utilities Ref: System



Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Subject to IBM’s valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs
and other programs (including this one) and (2) the mutual use of the information
that has been exchanged, should contact:

IBM Corporation

555 Bailey Avenue, W92/H3
P.O. Box 49023

San Jose, CA 95161-9023

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information

This book is intended to help database administrators and system programmers run
the IMS utility programs. This book primarily documents General-use Programming
Interface and Associated Guidance Information provided by IMS.

General-use programming interfaces allow the customer to write programs that
obtain the services of IMS.

However, this book also documents Diagnosis, Modification, or Tuning Information
which is provided to allow the customer to format and print program trace records of
IMS.

Attention: Do not use this Diagnosis, Modification, or Tuning Information as a
programming interface.

l_ Diagnosis, Modification, or Tuning Information

Diagnosis, Madification, or Tuning Information is identified where it occurs, either by
an introductory statement to a chapter or section or by the following marking:

© Copyright IBM Corp. 1974, 2000 Xiii



Diagnosis, Modification, or Tuning Information...

|_ End of Diagnosis, Modification, or Tuning Information

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AT MVS
CICS MVS/DFP
CICS/ESA MVS/ESA
CICS/MVS MVS/XA
DB2 RACF
DB2 for MVS/ESA RT

IBM VTAM
IMS 3090
IMS/ESA 400

Language Environment

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Product Names
In this book, the licensed program “DB2 for MVS/ESA” is referred to as “DB2".

XiV  IMS/ESA V6 Uitilities Ref: System



Preface

This book is a reference manual for database administrators and system
programmers who use the IMS/ESA utilities common to both the IMS Database
Manager and the IMS Transaction Manager to administer the IMS system. This
book can also be used by people interested in using these utilities with CICS/MVS
or CICS/ESA.

This publication is one of three utilities references in the IMS library. The scope of
the three publications is as follows:

- IMS/ESA Utilities Reference: Systenmdescribes utilities that apply to IMS at a

system level or that affect both database and data communications operations.

« IMS/ESA Utilities Reference: Database Manageiddescribes utilities that affect

database operations.

+ IMS/ESA Utilities Reference: Transaction Managetdescribes utilities for data

communications.

Table 3 an page xx lists each utility described in this book and the supported
environment, either DCCTL or DBCTL or both. Tahle 1 aon page xixX and [Tahle 2 od

hage xd list the utilities described in the IMS/ESA Utilities Reference: Databasd
Managed and IMS/ESA Utilities Reference: Transaction Managei and their

supported environments.

Organization of This Book

This book has six parts:

+ PRart1_Generation Utilitied contains information on the generation utilities for
PSBs and ACBs.

+ Part2_Service Utilitied describes the service utilities for dynamic allocation,
security maintenance, and online change.

+ Part3 | og Utilitied has information on the utilities used for archiving, merging,
and recovering logs.

+ Part 4 Analysis Utilities and Repoartd discusses the utilities used to generate and

print IMS reports.

+ Part5_Interpreting IMS Repartd explains how to interpret IMS reports.

» Part 6. Appendexes contains the Bibliography and the Index.

For a complete list of all books cited in this manual see the ['Bihliography” on

Prerequisite Knowledge

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses, see the following Web site at
http://www.software.ibm.com/data/ims

The reader should be familiar with MVS, and with IMS concepts, facilities, and
access methods. The prerequisite publications are:

© Copyright IBM Corp. 1974, 2000 XV



o - . |

Organization of Utility Descriptions
Utility descriptions are generally organized the same way, to help you find
information easily. Most utilities are described this way:

Overview of the utility’s functions

Restrictions that apply to the utility, such as processing that cannot be done
concurrently with the utility

Input and output
Job control statements needed to run the job
Utility control statements used to specify various processing options

When applicable, the descriptions also include:

* Output messages and statistics reports produced by the utility
» Error processing, with return codes and their meaning

* Examples of how to use the utility

Syntax Diagrams

The following rules apply to the syntax diagrams used in this book:

Arrow symbols
Read the syntax diagrams from left to right, from top to bottom, following
the path of the line.

»—— Indicates the beginning of a statement.

— Indicates that the statement syntax is continued on the next line.

»— Indicates that a statement is continued from the previous line.

— < Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
»— symbol and end with the — symbol.

Conventions

Keywords, their allowable synonyms, and reserved parameters, appear in
uppercase for MVS and OS/2 operating systems, and lowercase for
UNIX operating systems. These items must be entered exactly as shown.

Variables appear in lowercase italics (for example, column-name). They
represent user-defined parameters or suboptions.

When entering commands, separate parameters and keywords by at
least one blank if there is no intervening punctuation.

Enter punctuation marks (slashes, commas, periods, parentheses,
quotation marks, equal signs) and numbers exactly as given.

Footnotes are shown by a number in parentheses, for example, (1).
A b symbol indicates one blank position.

Required items
Required items appear on the horizontal line (the main path).

XVi  IMS/ESA V6 Uitilities Ref: System

»—REQUIRED_ITEM ><




Optional Items
Optional items appear below the main path.

A\
A

»>—REQUIRED_ITEM |_ _|
optional_item

If an optional item appears above the main path, that item has no effect on
the execution of the statement and is used only for readability.

optional_item
»>—REQUIRED_ITEM |_ —l

Multiple required or optional items
If you can choose from two or more items, they appear vertically in a stack.
If you must choose one of the items, one item of the stack appears on the
main path.

»—REQUIRED_ITEM—[requi red_choicel ><
required_choi ceZ—l

If choosing one of the items is optional, the entire stack appears below the
main path.

optional_choicel
optional_choice2

»>—REQUIRED_ITEM |: :‘ ><

Repeatable items
An arrow returning to the left above the main line indicates that an item can
be repeated.

A\
A

»»—REQUIRED_ITEM—Y—repeatable_item

If the repeat arrow contains a comma, you must separate repeated items
with a comma.

»»—REQUIRED_ITEM—Y—repeatable_item >

A repeat arrow above a stack indicates that you can specify more than one
of the choices in the stack.

Default keywords
IBM-supplied default keywords appear above the main path, and the
remaining choices are shown below the main path. In the parameter list
following the syntax diagram, the default choices are underlined.

Preface  XVil



XViii

»—REQUIRED_ITEM |:Z

|—de fault_choi ce—l

ptional_choice:‘
ptional choice

A\
A

IMS-specific syntax information

Fragments

Sometimes a diagram must be split into fragments. The fragments
are represented by a letter or fragment name, set off like this: | A |.
The fragment follows the end of the main diagram. The following
example shows the use of a fragment.

v
A

»>—STATEMENT—item I—item 2—| A i

A:

}—[item 3 KEYWORD |
item 4 I—item 5—|
|—item 6J

Substitution-block

Sometimes a set of several parameters is represented by a
substitution-block such as <A>. For example, in the imaginary
/VERB command you could enter /VERB LINE 1, /VERB EITHER
LINE 1, or /VERB OR LINE 1.

#.

<A>

v
A

where <A> is:

»>—EITHER «
Lo

Parameter endings

IMS/ESA V6 Utilities Ref: System

Parameters with number values end with the symbol '#, parameters
that are names end with 'name’, and parameters that can be
generic end with "',

v
A

»»— /MSVERI FY—[MSNAME—msname
SYSID—sysid#J

The MSNAME keyword in the example supports a name value and
the SYSID keyword supports a number value.



CICS, DBCTL, and DCCTL
When running CICS with DBCTL, CICS/ESA 3.1 or later releases must be used.

For DBCTL users, all utilities, commands, and parameters that are valid for IMS/DB
are valid for DBCTL, unless otherwise noted.

For DCCTL users, all utilities, commands, and parameters that are valid for IMS/TM
are valid for DCCTL, unless otherwise noted.

Change Indicators

Technical changes are indicated in this publication by a vertical bar (]) to the left of
the changed text.

Supported Environments for Various Utilities
Table 1, fable 2 on page x, and [Mahle 3 on page xx| provide a comprehensive

listing of all the IMS/ESA utilities contained in all three of the Utilities Reference
books. The figures also indicate whether the utility supports either DBCTL or
DCCTL or both.

anble 1l lists the database utilities described in the Utilities Reference: Database
Manager.

Table 1. Listing of Database Utilities and Supported Environments

Utility or Report Name Module Name Supports DBCTL  Supports DCCTL
Reorganization Utilities:

HISAM Reorganization DFSURULO X
Unload utility

HISAM Reorganization DFSURRLO X
Reload utility

HD Reorganization Unload DFSURGUO X
utility

HD Reorganization Reload DFSURGLO X
utility

Database Surveyor utility DFSPRSUR X
Partial Database DFSPRCT1 and X
Reorganization utility DFSPRCT2

Database Prereorganization = DFSURPRO X
utility

Database Scan utility DFSURGSO0 X
Database Prefix Resolution =~ DFSURG10 X
utility

Database Prefix Update utility DFSURGPO X
MSDB Maintenance utility DBFDBMAO

DEDB Initialization utility DBFUMINO X
DEDB Sequential Dependent DBFUMSCO X
Scan utility

DEDB Sequential Dependent DBFUMDLO X
Delete utility

Preface  XiX



XX

Table 1. Listing of Database Utilities and Supported Environments (continued)

Utility or Report Name

Module Name

Supports DBCTL

High Speed DEDB Direct DBFUHDRO X
Reorganization utility

Backup Utilities:

Database Image Copy utility DFSUDMPO X
Online Database Image Copy DFSUICPO X
utility

Recovery Utilities:

Database Change DFSUCUMO X
Accumulation utility

Database Recover utility DFSURDBO X
Batch Backout utility DFSBBOO00 X
MSDB Dump Recovery utility DBFDBDRO

DEDB Area Data Set Create DBFUMRIO X
utility

DEDB Area Data Set DBFUMMHO

Compare utility

Conversion Utilities:

MSDB-to-DEDB Conversion DBFUCDBO

utility

Utility Control:

Utility Control Facility DFSUCF00 X
Report and Test Utilities:

Program-Isolation-Trace DFSPIRPO X
Report utility

Database-Monitor Report DFSUTR30

Print utility

Sequential Buffer Test utility = DFSSBHDO

Report Interpretation:

Interpreting Database Monitor
Reports

fable 2 lists the data communications utilities described in the Utilities Reference:

Transaction Manager.

Table 2. Listing of Data Communications Utilities and Supported Environments

Utility or Report Name

Module Name

Supports DBCTL

Generation Utilities:

MFS Language utility DFSUPAAO
Reorganization Utilities:

MFS Device Characteristics DFSUTBO00
Table utility

Service Utilities:

Spool SYSOUT Print utility DFSUPRTO

IMS/ESA V6 Utilities Ref: System

Supports DCCTL

Supports DCCTL



Table 2. Listing of Data Communications Utilities and Supported Environments (continued)

Utility or Report Name Module Name Supports DBCTL  Supports DCCTL
Multiple Systems Verification DFSUMSV0 X

utility

MFS Service utility DFSUTSAO X
Time-Controlled Operations  DFSTVERO X

Verification utility

ffanle 3 lists the system utilities described in the Utilities Reference: System.

Table 3. Listing of System Utilities and Supported Environments

Utility or Report Name Module Name Supports DBCTL  Supports DCCTL
Generation Utilities:

Database Description (DBD) DBDGEN X X
Generation utility

Program Specification Block PSBGEN X X

(PSB) Generation utility

Application Control Block ACBGEN X X

(ACB) Maintenance utility

Service Utilities:

Dynamic Allocation Macro DFSMDA X X
utility

Online Change utility DFSUOCUO X X
Security Maintenance utility =~ DFSISMPO X X
Dynamic SVC utility DFSUSVCO X X
Log Utilities:

Log Recovery utility DFSULTRO X X
Log Archive utility DFSUARCO X X
Log Merge utility DFSLTMGO X
Analysis and Report Utilities:

File Select and Formatting DFSERA10 X X
Print utility

Offline Dump Formatter utility DFSOFMDO X X
Statistical Analysis utility DFSISTSO X
Log Transaction Analysis DFSILTAO X
utility

Fast Path Log Analysis utility DBFULTAO X X
IMS-Monitor Report Print DFSUR20 X X
utility

Report Interpretation:

Interpreting Statistical X
Analysis and Log Transaction

Reports

Interpreting //IDFSSTAT X X
Reports

Preface  XXi



Table 3. Listing of System Utilities and Supported Environments (continued)

Utility or Report Name Module Name Supports DBCTL  Supports DCCTL

Interpreting IMS Monitor
Reports

Interpreting IMS Monitor X
Reports for DBCTL

Interpreting IMS Monitor X
Reports for DCCTL

XXii  IMS/ESA V6 Utilities Ref: System



Summary of Changes

Changes to The

Current Edition of This Book for V6

This edition, which is in softcopy format only, includes technical and editorial
changes.

Changes to This Book for V6

This book contains new and changed information about the following
enhancements:

DEDB Online Change
Shared Queues

Shared VSO DEDB

New Time-Stamp Format

This book also contains the following changes:

KID0037

PTM30218

KVR0037

KID0069

DBRC utilities have been moved to the DBRC Guide and Reference book.

Library Changes for Version 6

The IMS/ESA Version 6 library differs from the IMS/ESA Version 5 library in these
major respects:

© Copyright IBM Corp. 1974,

IMS/ESA Commaon Queue Server Guide and Referencd

This new book describes the IMS Common Queue Server (CQS).

IMS/FSA DBRRC Guide and Referencd

This new book describes all the functions of IMS Database Recovery Control
(DBRC).

The IMS Application Programming summary books (IMS/ESA Application
Programming: Database Manager Summary, IMS/ESA Application Programming:
Transaction Manager Summary, and IMS/ESA Application Programming: EXEC
DLI Commands for CICS and IMS Summary) are no longer included with the IMS
library.

The Softcopy Master Index is not included.

All information about IRLM 1.5 and data sharing using IRLM 1.5 has been
removed from the IMS V6 books. If you use IRLM 1.5, and want to migrate to
using IRLM 2.1 and Sysplex data sharing, see i i

The chapter that was titled "Database Control (DBCTL) Interface” in the
IMS/ESA Customization Guide has been revised for Open Database Access
(ODBA) and moved to "Appendix A, Using the Database Resource Adapter
(DRA)" in the IMS/ESA Application Programming: Database Manager.

2000 XXiii



XXIV  IMS/ESA V6 Utilities Ref: System



Part 1. Generation Utilities

Chapter 1. Database Description (DBD) Generation.
Information Specified in DBD Generation. .
DBD Generation for Database Types .

HSAM DBD Generation .

GSAM DBD Generation .

HISAM DBD Generation .

HDAM DBD Generation .

HIDAM DBD Generation .

MSDB DBD Generation .

DEDB DBD Generation .

Index DBD Generation

Logical DBD Generation

DBD Generation Input Record Structure (Except for DEDB DBDs)

DEDB DBD Generation Input Record Structure . .o

DBD Generation Coding Conventions

DBDGEN Procedure .

PROC Statement . .
Invoking the Procedure .

JCL Parameters
Step C .

StepL . .
DBDGEN Statements

DBD Statement. .
DBD Statement for HSAM Database .
DBD Statement for GSAM Database .
DBD Statement for HISAM Database.
DBD Statement for HDAM Database .
DBD Statement for HIDAM Database
DBD Statement for MSDB Database .
DBD Statement for DEDB Database .
DBD Statement for INDEX Database.
DBD Statement for LOGICAL Database.

DBD Statement Parameter Descriptions.

DATASET Statements
Rules for Dividing a Database mto MuItrpIe Data Set Groups
Use of the LABEL Field. .

DATASET Statement for HSAM Database
DATASET Statement for GSAM Database .
DATASET Statement for HISAM Database.
DATASET Statement for HDAM Database .
DATASET Statement for HIDAM Database.
DATASET Statement for MSDB Database .
DATASET Statement for INDEX Database .
DATASET Statement for LOGICAL Database.

DATASET Statement Parameter Description .

Data Sets in IMS Data Set Groups .
DD Statements Required in the VSAM Operatlng System .
DD Statements Required in the OSAM Operatmg System .

AREA Statement . .o .o
AREA Statement for DEDB Databases .

AREA Statement Parameter Description

SEGM Statement .

SEGM Statement for HSAM Databases

© Copyright IBM Corp. 1974, 2000

QO OWOWWOWWWLWNNO OO O

AADNADADAAADNWWWWWWWWWWWNNNNNNRPRPRRPRPRPRRRRRRRERRRE
OCORDNWWNNARWWWONRNNROONNRPRPOOONNNNUGOORDWWWNO

=



2

SEGM Statement for HISAM Databases
SEGM Statement for HDAM Databases.
SEGM Statement for HIDAM Databases
SEGM Statement for MSDB Databases .
SEGM Statement for DEDB Databases .
SEGM Statement for INDEX Databases.
SEGM Statement for LOGICAL Databases
SEGM Statement Parameter Description
LCHILD Statement
Logical Relationships
Primary HIDAM Index Relatlonshlp
Secondary Index Relationships . .
LCHILD Statement for HISAM Databases .
LCHILD Statement for HDAM Databases .
LCHILD Statement for HIDAM Databases .
LCHILD Statement for INDEX Databases .
LCHILD Statement Parameter Description .
FIELD Statement .
FIELD Statement for HSAM Databases
FIELD Statement for HISAM Databases.
FIELD Statement for HDAM Databases .
FIELD Statement for HIDAM Databases
FIELD Statement for MSDB Databases .
FIELD Statement for DEDB Databases .
FIELD Statement for Index Databases
FIELD Statement Parameter Description
XDFLD Statement.
XDFLD Statement for HISAM Databases
XDFLD Statement for HDAM Databases
XDFLD Statement Parameter Description .
DBDGEN, FINISH, and END Statements
Output . .
Control Statement L|st|ng
Diagnostics .
Assembler Listing .
Segment Prefix Format Descnptlon
Load Module. .
DBD Generation Error Cond|t|ons .
Examples . .
Examples without Secondary Index or Loglcal Relat|onsh|ps .
Example of HSAM DBD Generation .
Example of HISAM DBD Generation .
Example of HDAM DBD Generation .
Example of HIDAM DBD Generation .
Example of GSAM DBD Generation .
Example of MSDB DBD Generation .
Example of DEDB DBD Generation
Summary of Physical Database Description Examples
Examples with Logical Relationships .
Examples with Secondary Indexes .
Example of DBDGEN for Secondary Index Databases
Example of DBDGEN for a Shared Secondary Index Database

Chapter 2. Program Specification Block (PSB) Generation .
Input and Output.
PSBGEN Procedure

IMS/ESA V6 Utilities Ref: System

. 46
. 48
. 49
. 51
. 51
. 52
. 53
. 53
. 67
. 67
. 67
. 67
. 67
. 68
. 69
. 69
. 70
.72
.72
. 73
. 73
. 73
. 74
. 74
.74
.74
.79
.79
. 80
. 80
. 82
. 82
. 82
. 82
. 83
. 85
. 86
. 86
. 86
. 86
. 87
. 88
. 89
. 90
. 92
. 93
. 94
. 96
. . 96
. 101
. 103
. 105

. 109
. 109
111



PROC Statement. . . . . . . . . . . . . . . . . . . ... .1nn
StepC . . e I 24
DD Statements e e 4
StepL. . . . . . . . L. L2
DD Statements . . . . . . . . . . . . . . . . . . . ..o 112
Invoking the Procedure . . . . . . . . . . . . . . . . . . . .112
Utility Control Statements . . . . . . . . . . . . . . . . . . . .12
Alternate PCB Statement. . . . e <
DL/l or Fast Path Database PCB Statement. . e . . . . . . . . . .15
Use of PROCOPT=(with FastPath). . . . . . . . . . . . . . . 119
GSAM PCB Statement . . . . . . . . . . . . . . . . . . . .125
SENSEG Statement . . . . . . . . . . . . . . . . . . . . .126
SENFLD Statement. . . . . . . . . . . . . . . . . . . . . .128
PSBGEN Statement . . . . . . . . . . . . . . . . . . . . .129
END Statement . . . e 7
Output Messages and Statlstlcs O ¥
Examples . . . e Y
PSB Generation Examples e RC 7|
Examplel . . . . . . . . . . . . . . . . . . . . ... .13
Example2 . . . . . . . . . . . . . . . . . . . . . .. .135
Example3 . . . . . . . . . . . . . . . . . . . . . .. .135
Example4 . . . . . . . . . . . . . . . . . . . . . .. .136
Example5 . . . . .. . . . . . . . . .13
Field Level Sensitivity PSB Generatlon Example .. . . . . . . . . .136
Fast Path PSB Generation Examples . . . . . . . . . . . . . . . 137
Examplel . . . . . . . . . . . . . . . . . . . . . .. .138
Example2 . . . . T RS
Additional PSB Generat|on Examples e
Exampled . . . . . . . . . . . . . . . . . . . . . .. .139
Example2 . . . . . . . . . . . . . . . . . . . . . .. .14
Example3 . . . . . . . . . . o000 0.0 14
Example 4 . . . . S v X
Examples of a Sample Problem W|th an Appl|cat|on Database I |
Example5 . . . . . . . . . . o ... L0000 L 142
Example6 . . . . . . . . . . . . . . . . . . . . ... 142
Example7 . . . . . . . . . . . . . . . . . . . . . . . .143
Example8 . . . . . . . . . . . . . . . . . . . . . . . .143
Example9 . . . . . . . . . . . . . ... ... ... .14
Example 10 . . . O 7
Example of a Shared Secondary Index P 1215
Example12. . . . . . . . . . . . . . . . . . . . . . . .145

Chapter 3. Application Control Blocks Maintenance Utility . . . . . . . 149
Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . .15
Inputand Qutput. . . . . . . . . . . . . . . . . . . . . . . .150
ACBGEN Procedure . . . . . . . . . . . . . . . . . . . . .151
Invoking the Procedure . . . . . . . . . . . . . . . . . . .151
EXEC Statement. . . . . . . . . . . . . . . . . . . . . . .152
DD Statements . . . 1524
DFSACBCP Control Statement Y RS XC
Utility Control Statements . . . . e . . . . . . . . . . .153
Managing Dynamic Option (DOPT) PSBs . e . . . . . . . . . . .156
Error Processing. . . . . e £514)
Examples . . . . . . . . . . . . . . . . . . . . . . . . . .157
Examplel . . . . . . . . . . . . . . . . . . . . . . . . .157
Example2 . . . . . . . . . . . . . . . . . . . . . . .. .157

Part 1. Generation Utilites 3



Example3 . . . . . . . . . . . . . . . . . . . . . . . . .157

4 IMS/ESA V6 Utilities Ref: System



Chapter 1. Database Description (DBD) Generation

Use the Database Description Generation (DBDGEN) utility to define a database so
it can be used by an application program. You create a Database Description (DBD)
by coding special macro instructions. These macros become the input to the
DBDGEN utility. Use DBDGEN for the following types of databases:

HSAM (including SHSAM)
GSAM

HISAM (including SHISAM)
HDAM

HIDAM

MSDB

DEDB

Index

Logical

There are strict rules for structuring DBDGEN input. A separate input set is required
for each database.

The DBDGEN program accepts several types of control statements. Each control
statement type is briefly described below:

* The DBD statement names the database being described and provides DL/l with
information concerning database organization.

* The DATASET statement is used only in non-DEDB DBDGEN input record
structures. The DATASET statement defines a data set group within a database.
(One or more DATASET statements follow the DBD statement.)

* The AREA statement is used only in DEDB DBDGEN input record structures.
The AREA statement defines an area within a database. (One or more AREA
statements follow the DBD statement.)

* The SEGM statement defines the specified database’s segments. The SEGM
statement is used with the following statements:

FIELD
XDFLD
LCHILD

Each statement defines different aspects of a segment.
* The DBDGEN statement indicates the end of DBDGEN control statements.
* FINISH is an optional statement retained in the input stream for compatibility.

* The END statement indicates to the MVS assembler that the end of the input
statements has been reached.

In this Chapter:

© Copyright IBM Corp. 1974, 2000 5



DBDGEN

Information Specified in DBD Generation

A database description (DBD) is a DL/I control block containing all of the database
information needed by an application program. You can use only one physical DBD
to describe each physical database; otherwise, user abend U850 or U853 occurs.
At execution time, DL/l uses the DBD to create a set of internal control blocks. The
DBDGEN utility defines each DBD with the following database information:

* Segment types

» Physical and logical relationships between segment types
» Database organization and access method

» Physical characteristics of the database

You can also use the DBDGEN utility to define the name and data options of
selected exit routines.

DBD Generation for Database Types

The following databases utilize DBDGEN:
HSAM (including SHSAM)
GSAM
HISAM (including SHISAM)
HDAM
HIDAM

SHSAM and SHISAM are simple databases. Each contains only one fixed-length
segment type. Discussions on SHSAM and SHISAM can be found in paragraphs
dealing with HSAM and HISAM, respectively.

The following also utilize DBDGEN:
MSDB
DEDB
Index
Primary HIDAM
Secondary
Logical

HSAM DBD Generation

During DBD generation for an HSAM database, you specify:
* One data set group.

* The ddname of an input data set that is used when an application retrieves data
from the database.

* The ddname of an output data set that is used when loading the database.
* From 1 to 255 segment types for the database.

* From 0 to 255 fields within each segment type, with a maximum of 1000 fields
within the database.

» Optionally, you can define a simple HSAM (SHSAM) database that can contain
only one fixed-length segment type. When defined, no prefixes are built in
occurrences of the segment type.

6  IMS/ESA V6 Utilities Ref: System



DBDGEN

For a HSAM database you cannot specify:

* The use of hierarchic or physical child/physical twin pointers between segments
in the database

* The use of logical or index relationships between segments
GSAM DBD Generation

During DBD generation for a GSAM database, you specify:
* One data set group

* The ddname of an input data set that is used when an application retrieves data
from the database

* The ddname of an output data set that isused when loading the database

You cannot specify:
* SEGM and FIELD statements
» The use of logical or index relationships between segments

IMS adds 2 bytes to the record length value specified in the DBD in order to
accommodate the ZZ field that is needed to make up the BSAM RDW. Whenever
the database is GSAM/BSAM and the records are variable (V or VB), IMS adds 2
bytes. The record size of the GSAM database is 2 bytes greater than the longest
segment that is passed to IMS by the application program.

HISAM DBD Generation

During DBD generation for a HISAM database, you specify:
* One data set groups.

* The ddname of one VSAM key sequenced data set (KSDS) and one VSAM entry
sequenced data set (ESDS). HISAM/VSAM supports only one data set group;
you cannot have a secondary data set group with these.

» Optionally, you can define a simple HISAM (SHISAM) database that can contain
only one fixed-length segment type. When defined, no prefixes are built in
occurrences of the segment type. The logical record length specified for a
SHISAM database must be equal to or greater than the segment length
specified.

» At least one segment type for each data set group, and a maximum of 255
segment types for the database.

* From 0 to 255 fields for each segment type, and a maximum of 1000 for the
database, one of which must be a unique sequence field in the root segment
type for indexing root segment occurrences.

* A maximum of 32 secondary index relationships (optional) per segment type, and
a maximum of 1000 for the database.

» Logical relationships (optional) using symbolic pointer options when a segment in
a HISAM database points to another segment in a HISAM database, and direct
or symbolic pointer options when a segment in a HISAM database points to a
segment in an HDAM or HIDAM database.

* Segment Edit/Compression exit routine routines, which are optional, to enable
user-supplied routines to manipulate each occurrence of a segment type to or
from auxiliary storage.

» Data Capture exit routine, which is optional, to enable DB2 end users access to
updated IMS data. This exit routine can be used in SHISAM also.

Chapter 1. Database Description (DBD) Generation 7



DBDGEN

Restriction:You cannot specify the use of hierarchic or physical child/physical twin
pointers between segments in a HISAM database.

HDAM DBD Generation

During DBD generation for an HDAM database, you specify:

The name of the user-supplied randomizing module used for placement of root
segment occurrences

One to 10 data set groups
How free space is to be distributed in each data set group
The ddname of an OSAM or ESDS data set for each data set group defined

At least one segment type for each data set group, and a maximum of 255
segment types for the database

Segment Edit/Compression exit routine routines, which are optional, to enable
user-supplied routines to manipulate each occurrence of a segment type on their
way to or from auxiliary storage

The use of hierarchic or physical child/physical twin pointers between segments
in the database

Logical relationships (optional) between segments using direct address and/or
symbolic pointer options

From 0 to 255 fields for each segment type, and a maximum of 1000 for the
database

A maximum of 32 secondary index relationships (optional) per segment type and
a maximum of 1000 for the database

Data Capture exit routine, which is optional, to enable DB2 end users access to
updated IMS data

HIDAM DBD Generation

During DBD generation for a HIDAM database, you specify:

8 IMS/ESA V6 Utilities Ref

One to 10 data set groups
How free space is to be distributed in each data set group
The ddname of an OSAM or ESDS data set for each data set group defined

At least one segment type for each data set group, and a maximum of 255
segment types for the database

Segment Edit/Compression exit routine routines, which are optional, to enable
user-supplied routines to manipulate each occurrence of a segment type on their
way to or from auxiliary storage

A maximum of 32 secondary index relationships (optional) per segment type and
a maximum of 1000 for the database

The use of hierarchic or physical child/physical twin pointers between segments
in the database

Logical relationships (optional) between segments using direct address and/or
symbolic pointer options

From 0 to 255 fields for each segment type, and a maximum of 1000 for the
database, one of which must be a unique sequence field in the root segment
type for indexing root segment occurrences

Data Capture exit routine, which is optional, to enable DB2 end users access to
updated IMS data

: System



DBDGEN
MSDB DBD Generation

During DBD generation for a MSDB, you must specify:
* One database name

* One data set group

* One segment type for the database

* From O to 255 fields within the database

You cannot specify:
* Alogical or index relationship between segments
* Fields used with secondary indexes

If the DBD for an existing MSDB is changed, the header information (BHDR) might
change, even though the database segments are unchanged. This might result in
message DFS2593I because of the attempted load from the MSDBCPx data set. In
this case, the headers in the MSDBCPn data sets are either invalid or the wrong
length. If ABND=y is specified in the MSDB PROCLIB member, it also causes a
U1012 abend. After modifying the DBD, load the MSDBs from a MSDBINIT data set
by using the MSDBLOAD option for either a warm start or a cold start to eliminate
these problems.

DEDB DBD Generation

During DBD generation for a DEDB, you must specify:
* One database name

* From 1 to 240 areas within a database

* From 1 to 127 segment types for the database

* From 0 to 255 fields for each segment type, with a maximum of 1000 fields
within the database, one of which must be a unique sequence field for the root
segment type

¢ The ddname or area name used to describe an area

» Data Capture exit routine, which is optional, to enable DB2 end users access to
updated IMS data

You can optionally specify up to eight subset pointers for each child type of the
parent.

You cannot specify:
* Alogical or index relationship between segment types
» Fields used with secondary indexes

Index DBD Generation

Primary HIDAM index DBD generation creates an index database composed of one
index segment type that indexes occurrences of the HIDAM root segment type. An
index segment contains:

* The sequence field key of the root segment occurrence it indexes
* In its prefix, a direct address pointer to the root segment occurrence

During DBD generation for a primary HIDAM index, you must specify:
* One database name.

Chapter 1. Database Description (DBD) Generation 9



DBDGEN
* One data set group. You must specify the ddname of one OSAM data set or the
ddname of one KSDS.
* One segment type.

* The index relationship required between the primary HIDAM index database and
the root segment type of a HIDAM database.

» A field within the segment type.
Restriction:You cannot specify fields used with secondary indexes.

Secondary index DBD generation creates a secondary index database made up of
1 to 16 index pointer segment types. These are used to index target segment types
in HISAM, HDAM, or HIDAM databases.

During DBD generation for a secondary index, you must specify:
* One database name.

* One data set group. If all index pointer segment keys are unique, you must
specify the ddname of one KSDS. If index pointer segment keys are nonunique
you must specify the ddnames of one KSDS and one ESDS. A secondary index
must use VSAM.

* From 1 to 16 segment types.
* From 1 to 16 secondary index relationships.
* From 1 to 1000 fields for each segment type.

Logical DBD Generation

A logical DBD generation creates a logical database made up of logical segment
types. A logical segment type is a segment type defined in a logical database that
represents a segment type or the concatenation of two segment types defined in a
physical database or databases.

During DBD generation for a logical database, you must specify:
* One database name.
* One logical data set group.

* From 1 to 255 segment types. Each defines the name of a logical segment type,
and the name of the segment type or types in physical databases that are to be
processed when a call is issued to process the logical segment type.

The logical relationships used to create a logical database must be defined in a
physical database or databases.

All fields required for segments in a logical database must have been defined in
physical databases.

DBD Generation Input Record Structure (Except for DEDB DBDs)
The DBDGEN program accepts ten types of control statements. Each control
statement must be added to the SYSIN input stream in a specific order.

shows the rules for structuring DBD generation input.
Exception:This input record structure applies to all DBDs except DEDB DBDs.

The PRINT statement is optional. If included, it is the first statement in the input
deck. When PRINT is not included, the DBD statement is first in the input deck.

10 IMS/ESA V6 Utilities Ref: System



DBDGEN

One or more DATASET statements follow the DBD statement. Each DATASET
statement is followed by the SEGM, LCHILD, FIELD, and XDFLD statements in that
data set group. At least one SEGM statement must follow each DATASET
statement. When multiple SEGM statements follow a DATASET statement, they
must be placed in hierarchic order.

FIELD, LCHILD, and XFLD statements do not have to be placed in any specific
order behind a SEGM statement, unless a sequence field is being defined within a
segment or a secondary index relationship is being defined. When a FIELD
statement defines a sequence field within a segment, it must precede any XDFLD
statements or any other FIELD statements that follow a SEGM statement. LCHILD
statements follow the SEGM that defines a logical parent, HIDAM root, index target
and index pointer segment types. When you are defining a secondary index
relationship, the LCHILD statement that establishes the relationship must be
followed by its corresponding XDFLD statements. No unrelated LCHILD statements
can intervene between the two. XDFLD statements follow a SEGM that defines an
index target segment type for a secondary index.

Requirement: The DBDGEN statement is required.

If FINISH is used, it precedes the END statement. END is the last statement in the
input record structure.

Chapter 1. Database Description (DBD) Generation 11



DBDGEN

Aseparate inputsetof Additional
recordsisrequired for datasetgroups
each database.

S NISH I
<
DBDGEN
\
AN

Primary data setgroup SEGM followed by
itsfield, LCHILD
& XDFLD statements

* SEGM statementsin
DBDGEN input set of
records mustbe placed
inthe same hierarchic
orderasthe segments
aretobeinthedata-
base being defined

DATASET

Figure 1. DBDGEN Input Record Structure (Except DEDB)

DEDB DBD Generation Input Record Structure

The input record set structure for a DEDB DBD generation is essentially the same
as for the other types of DBD generation except that AREA statements are used
instead of DATASET statements. All AREA statements must immediately follow the
DBD statement. The SEGM statements and their associated FIELD statements
follow the last AREA statement in hierarchic order.

For DEDB DBD generation:

* The data set group concept does not apply.

» A secondary index is not permitted.

» Logical relationships between databases are not permitted.
* LCHILD and XDFLD statements are not permitted.

* Sequential dependent segments cannot have dependents.

Eigure 2 on page 13 shows the rules for structuring a DEDB DBD generation input
set of records.

12 IMS/ESA V6 Utilities Ref: System



DBDGEN

Aseparateinput setof
recordsisrequired for
each database. EINISH

DBDGEN

followed by their

SEGM statements
field statements

*SEGM statementsin
DBDGEN inputsetof
records mustbe placed
inthe same hierarchic
orderas the segments
aretobeinthedata-
base being defined

Figure 2. DEDB DBDGEN Input Record Structure

DBD Generation Coding Conventions

DBD generation statements are assembler language macro instructions and
therefore are subject to the rules contained in the High Level Assembler
Programmer’s Guide.

1. Each control statement must be identified by an operation code, for example:
record-type code.

2. In the generalized format shown in the following descriptions of the control
statements, see the syntax conventions described in L i “

DBDGEN Procedure

Stage 2 of system definition causes the DBDGEN procedure to be placed in the
IMS.PROCLIB library.

This is a two step assemble and link-edit procedure to produce database definition
blocks (DBDs).

PROC Statement
An example of the JCL for the DBDGEN utility is shown in Eigure 3 an page 14.

Chapter 1. Database Description (DBD) Generation 13



DBDGEN

// PROC MBR=TEMPNAME, SOUT=A,RGN=256K,SYS2=

//C  EXEC PGM=ASMA90,REGION=&RGN,PARM='0BJECT,NODECK'
//SYSLIB DD DSN=IMS.&SYS2MACLIB,DISP=SHR

//SYSLIN DD UNIT=SYSDA,DISP=(,PASS),

// SPACE=(80, (100,100) ,RLSE),

// DCB=(BLKSIZE=80,RECFM=F,LRECL=80)

Figure 3. JCL for DBDGEN Utility (Part 1 of 2)

//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089, ;

// SPACE=(121, (300,300) ,RLSE, ,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),

// SPACE=(CYL, (10,5))

//L EXEC PGM=IEWL,PARM='XREF,LIST',COND=(0,LT,C),REGION=120K

//SYSLIN DD DSN=#.C.SYSLIN,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=&SOUT,DCB=BLKSIZE=1089, ;

/! SPACE=(121, (90,90) ,RLSE)

//SYSLMOD DD DSN=IMS.&SYS2DBDLIB(&MBR),DISP=SHR
//SYSUTL DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

// SPACE=(1024, (100,10) ,RLSE) ,DISP=(,DELETE)

Figure 3. JCL for DBDGEN Utility (Part 2 of 2)

Invoking the Procedure
To process a request for a DBDGEN, the DBD generation control statements must

be created and appended to the JCL (shown in ) which invokes the
DBDGEN procedure.

//DBDGEN JOB MSGLEVEL=1
// EXEC DBDGEN,MBR=
//C.SYSIN DD =*

DBD
DATASET
SEGM
FIELD DBD generation control statements
LCHILD
XDFLD
DBDGEN
FINISH
END
/*

Figure 4. Procedure to Invoke DBDGEN

JCL Parameters

14

MBR=
Is the name of the DBD to be generated. This name should be the same as the
first name specified for the NAME= keyword on the DBD statement. The first
database name becomes the DBD member name and, in the case of a shared
secondary index, the additional names are added as aliases. When a database
PCB relates to this DBD generation, one of the names specified in the NAME=
keyword on the DBD statement must be the name used in the DBDNAME=
keyword on the database PCB statement. Except for a shared secondary index,
the name used in the DBDNAME= keyword on the database PCB statement
must be the same as the name used in the MBR= keyword value.

IMS/ESA V6 Utilities Ref: System



DBDGEN

RGN=
Specifies the region size for this execution. The default is 256KB.

SOUT=
Specifies the class assigned to SYSOUT DD statements.

SYS2=
Specifies an optional second level dsname qualifier for those data sets which
are designated as “Optional Replicate” in an XRF complex. When specified, the
operand must be enclosed in quotes and must include a trailing period; for
example, SYS2="'IMSA.".

Step C
Step C is the assembly step.

DD Statements:

SYSIN DD
Defines the input data sets to step C. These DD statements must be provided
when invoking the procedure.

Related Reading:For information on assembling steps, refer to High Level
Assembler Programmer’s Guide.

Step L
Step L is the link-edit step.

Example:This step can be run using AMODE=31, RMODE=24 instead of the

default AMODE=24, RMODE=24 by adding AMODE=31 to the link-edit EXEC

statement PARM list as shown below.

//L EXEC PGM=IEWL,PARM='XREF,LIST,AMODE=31",
// COND=(0,LT,C) ,REGION=120K

If you do not specify different values for AMODE or RMODE, the default values are
in effect. You must always run the link-edit step with RMODE=24.

Related Reading:For more information about linkage editors, refer to MVS/DFP

Linkage Editor and Loader.

DD Statements:

IMS.DBDLIB DD
Defines an output partitioned data set, IMS.DBDLIB, for the linkage editor.

DBDGEN Statements

frable 4 shows the statement types used as input to the DBD generation utility to

define a database. Also included is the general use of each statement and the
number of each type used per DBD generation.

Table 4. Summary of DBD Generation Statements

Number used per DBD generation

Statement| General Use -
HSAM | GSAM | HISAM | HDAM | HIDAM | MSDB | DEDB | Index | Logical
[PRINT]III Controls 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1
printing of

assembly listing

if present

Chapter 1. Database Description (DBD) Generation 15



DBDGEN

Table 4. Summary of DBD Generation Statements (continued)

Statement

General Use

Number used per DBD generation

HSAM

GSAM

HISAM

HDAM

HIDAM

MSDB

DEDB

Index

Logical

DBDE

Defines
database name

1

1

1

1

1

1

1

1

DATASET

Defines a data
set group within
a database

1-10

1-10

1-10

AREAE

Defines an
area within a
Fast Path
database

1-240

SEGM

Defines a
segment type
within a data
set group or
area

1-255

1-255

1-255

1-255

1-127

1-255

[LCHILD]

Defines a
logical or index
relationship
between
segment types

0-255

0-255

1-255

[FIELD]®

Defines a field
within a
segment type

0-1000

1-1000

0-1000

1-1000

0-255

1-1000

[XDFLDIP

Defines fields
used with
secondary
indexes

0-1000

0-1000

0-1000

DBDGEN

Indicates the
end of DBD
generation
statements

FINISH

Checks for
successful DBD
generation

END

Indicates end
of DBD
generation

input to the
MVS assembler

Notes:

1. For operand information, see OS/VS-DOS/VSE-VM/370 Assembler Language

a > wDn

Maximum of 16 for a secondary index database.
The maximum combined total of FIELD and XDFLD statements per DBD generation is 1000.
Maximum of 1000 for a secondary index database.
All Full Function Database names and DEDB area names must be unique.

16 IMS/ESA V6 Utilities Ref: System



DBDGEN
DBD Statement

The DBD statement names the database being described and provides DL/l with
information concerning its organization. There can be only one DBD control
statement in the control statement input deck.

The format of the DBD macro instruction for each database type is shown in the
following examples. A description of the statement parameters is in EDBD Statement

DBD Statement for HSAM Database

NO
>>—DBD—NAME=dbname1—,/-\CCESS=—|:HSAM ,DATXEXIT= YES_I ><
SHSAM

DBD Statement for GSAM Database

, VSAM
»»—DBD—NAME=(dbnamel)—,ACCESS=— (—GSAM—[, BSAMZI—) >
NO
> ,DATXEXIT= YES_| ><

NO
—, PASSWD=J:YES

DBD Statement for HISAM Database

|—,VSAM—|
»»—DBD—NAME=(dbnamel)—,ACCESS= L(—HISAM ) J >
(—SHISAM )
|—,VSAM—|
(1) —NONE
> EXIT= ( 1 A C ) >
L 0 | ’H |
, PASSWD= YES s
vy ] L
GApP——C]
NO
> ,DATXEXIT= YES_| »><

(2)

\\,VERSION='n'

Chapter 1. Database Description (DBD) Generation 17



DBDGEN

» LOG—
,NOLOG—

(3)
}—[:m—‘ B | i:

B:
|
t,KEYﬂ i:,PATHi‘ ,DATA—

,NOKEY ,NOPATH ,NODATA-

C:
(4)

|
[

,CASCADE

,NOCASCADE

,(CASCADE& B g)—

, (NOCASCA E-| r)—
Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit
routine on a DBD statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine is not required because only logging is being requested,
specify the exit name as * and the default logging parameter is LOG. If you
do specify an exit routine name, the default logging parameter is NOLOG.

4 Used to control the CASCADE options.
DBD Statement for HDAM Database

,VSA

»—DBD—NAME:(dbnamel)—,ACCESS:—(—HDAM—[,OSAM )
(1)

»—, RMNANE= (mod )

I—, anch—, rbn—, b, ytesJ J:NO

L, PASSWD=—LYES
(2) —NONE
>—EXIT=—(——| AHC )
, L 3)
, ,VERSION="n
— AP

18 IMS/ESA V6 Utilities Ref: System



DBDGEN

NO
»— DATXEXIT= YES_| »<
A:
(4)
*

—LexitnaneL— 5 | |

i:,LOG—

,NOLOG—

B:

|
[ I
i:, KEYﬂ i:, PATH— i:,DATA—
NOKEY ,NOPATH- ,NODATA-

C:
(5)
| I
,CASCADE
,NOCASCADE———
,(CASCADE[L B g)—
, (NOCASCA E-I r)—
Notes:

1 Optional operands, such as anch and rbn, might be required by certain
randomizing modules. See the documentation for the randomizing module you
are using.

2 Used for the Data Capture exit routine. You can specify more than one exit
routine on a DBD statement.

The default is an automatic DBDGEN time stamp.

4 If an exit routine is not required because only logging is being requested,
specify the exit name as * and the default logging parameter is LOG. If you
do specify an exit routine name, the default logging parameter is NOLOG.

5 Used to control the CASCADE options.
DBD Statement for HIDAM Database

[,VSAM
»»>—DBD—NAME=dbnamel— ,ACCESS=—(—HIDAM ,0SAM ) >

Chapter 1. Database Description (DBD) Generation 19



DBDGEN

20

(1) —NONE

EXIT= ( AHC}¢ )
L 0 & Ao
PASSWD= YES _

Y

\/

A ¢

NO
> ,DATXEXIT= YES_| ><
L (2)
,VERSION="n"
A:
(3)
*:
- Loverane L5 ,
i:,LOG—
,NOLOG—
B:
| I
—, KEY— —, PATH— —, DATA—
L, NOKEY— L, NOPATH- L, NODATA-
C:
(4)
| I
,CASCADE
,NOCASCADE———
,(CASCADEl B é)_
, (NOCASCA E-| r)—
Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit
routine on a DBD statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine is not required because only logging is being requested,
specify the exit name as * and the default logging parameter is LOG. If you
do specify an exit routine name, the default logging parameter is NOLOG.

4 Used to control the CASCADE options.
DBD Statement for MSDB Database

»»—DBD—NAME=dbname1— ,ACCESS=MSDB ><

IMS/ESA V6 Utilities Ref: System



DBDGEN
DBD Statement for DEDB Database

»»—DBD—NAME=dbnamel— ,ACCESS=DEDB—, RMNAME=—(mod, . . . XCI) >
(1) —NONE
>—EXIT=—(——| A |—| C I ) ><
, L (2)
. ,VERSION="n
QA | C
A:
(3)
*
Lovtenane L 5 ;
i:’LOG_
,NOLOG—
B:

|
[ |
i:, KEYi‘ i:, PATHi‘ i:,DATA—
NOKEY ,NOPATH ,NODATA-

C:
(4)
| I
,CASCADE
,NOCASCADE————
,(CASCADEE B g)—
, (NOCASCA E-| r)—
Notes:

1 Used for the Data Capture exit routine. You can specify more than one exit
routine on a DBD statement.

2 The default is an automatic DBDGEN time stamp.

3 If an exit routine is not required because only logging is being requested,
specify the exit name as * and the default logging parameter is LOG. If you
do specify an exit routine name, the default logging parameter is NOLOG.

4 Used to control the CASCADE options.

DBD Statement for INDEX Database

Chapter 1. Database Description (DBD) Generation 21



DBDGEN

»»—DBD—NAME=(dbnamel—Y

) »
l—, dbnameZJ

(1) l—,PROT
l—,NOPROT—| l—,DOSCOMP—| |—)—| ]

»—,ACCESS=(INDEX,VSAM

NO
> ,DATXEXIT= YES_|

NO
L, PASSWD=£Y ES

A\
A

Notes:

1 A secondary index must use VSAM.
DBD Statement for LOGICAL Database

»>—DBD—NAME=dbnamel—,ACCESS=LOGICAL

v
A

DBD Statement Parameter Descriptions

DBD
Identifies this statement as the DBD control statement.

NAME=
Specifies the name of the DBD for the database being described. The name
can be from 1 to 8 alphanumeric characters and can be the same as that
specified in the DD1= operand of the first DATASET control statement. For a

shared secondary index database, the names of up to 16 secondary index
DBDs can be specified.

Do not give a DBD the same name as an existing PSB. Using an existing hame
can cause unpredictable results. An error occurs at ACBGEN time.

ACCESS=
Specifies the DL/I access method and the operating system access method to
be used for this database. The value of the operand has the following meaning:
HSAM

Means the hierarchical sequential access method (HSAM) is to be used for
the database described by this DBD. When HSAM is specified, and only
one segment type is defined in the HSAM database, this operand defaults

to SHSAM.

SHSAM
Specifies a simple HSAM database that contains only one fixed length
segment type. When a simple HSAM database is defined, no prefix is

required in occurrences of the segment type to enable IMS to process the
database.

GSAM

Means the generalized sequential access method (GSAM) is to be used for
the database described by the DBD. BSAM or VSAM can be specified as

22 IMS/ESA V6 Utilities Ref: System



DBDGEN

the operating system access method. VSAM is the default. When GSAM is
specified, no SEGM control statement is allowed in the DBD generation.

HISAM

Means the hierarchical index sequential access method (HISAM) is to be
used for the database described by this DBD. VSAM can be specified as
the operating system access method. It is the default.

SHISAM

Specifies a simple HISAM database that contains only one fixed length
segment type. A simple HISAM database can only be specified when VSAM
is specified as the operating system access method. When a simple HISAM
database is defined, no prefix is required in occurrences of the segment
type to enable IMS to process the database.

HDAM

Means the hierarchical direct access method (HDAM) is to be used for the
database described by this DBD. OSAM or VSAM can be specified as the
operating system access method. VSAM is the default.

HIDAM

Means the hierarchical indexed direct access method (HIDAM) is to be
used for the database described by the DBD. OSAM or VSAM can be
specified as the operating system access method. VSAM is the default.

MSDB

Means a main storage database (MSDB) is described by the DBD.

DEDB

Means a data entry database (DEDB) is described by the DBD.

INDEX

Creates the primary index to occurrences of the root segment type in a
HIDAM database, or creates a secondary index to a segment type in a
HISAM, HDAM or HIDAM database. For the primary index to a HIDAM
database, VSAM can be specified as the operating system access method.
For a secondary index, VSAM must be specified as the operating system
access method. In both cases, VSAM is the default.

PROT or NOPROT
Applies only to secondary index databases. The PROT operand on the
DBD statement is an optional parameter that is used to ensure the
integrity of all fields in index pointer segments that are used by IMS.
Use of this parameter prevents an application program from doing a
replace operation on any field within an index pointer segment except
for fields within the user data portion of index pointer segments. When
PROT is specified, delete operations are still enabled for index pointer
segments. If PROT is specified and a delete is issued for an index
pointer segment, the index target segment pointer in the index pointer
segment is deleted. However, the index source segment that caused
the index pointer segment to be created originally is not deleted. If
NOPROT is specified, an application program can replace all fields
within an index pointer segment except the constant, search, and
subsequence fields. Inserts to an index database are invalid under all
conditions. PROT is the default for this parameter.

DOSCOMP
Must be specified if the database is an index, and it was created using
DLI/DOS. DLI/DOS index databases contain a segment code as part of
the prefix. Selection of the DOSCOMP operand causes IMS to expect

Chapter 1. Database Description (DBD) Generation 23



DBDGEN

this code to be present in the defined database, and to process in a
way that preserves this code. This includes providing a segment code
for new segments being inserted. The DOSCOMP operand can only be
specified for databases that use VSAM.

LOGICAL
Means that the database described by this DBD is a LOGICAL database. A
LOGICAL database is composed of one or more physical databases. A
LOGICAL DBD generation is meaningful only when physical DBD
generations exist that define the segment types that are referenced by
SEGM statements in a LOGICAL DBD generation.

RMNAME=

Specifies information used to manage data stored in a DEDB or in the primary
data set group of an HDAM database. This operand is only valid when
ACCESS=HDAM or DEDB is specified. The parameters of this operand are
defined below. A randomizing module controls root segment placement in or
retrieval from the DEDB or HDAM database. One or more modules, called
randomizing modules, can be utilized within the IMS system. A particular
database has only one randomizing module associated with it. A generalized
module, which uses DBD generation-supplied parameters to perform
randomizing for a particular database, can be written to service several
databases. The purpose of a randomizing module is to convert a value supplied
by an application program for root segment placement in, or retrieval from, a
DEDB or HDAM database into a relative block number and anchor point
number. You can randomize within an area by selecting a two-stage randomizer.
When you select a two-stage randomizer, the number of root anchor points in
an area can be changed without having to stop all areas in the DEDB with the
/DBRECOVERY command.

mod
Specifies the 1- to 8-character alphanumeric name of a user-supplied
randomizing module that isused to store and access segments in this
DEDB or HDAM database. Select a two-stage randomizer by specifying the
randomizer name in the mod parameter and 2 in the anchor point
parameter.

Related Reading:For further examples of HDAM and Fast Path DEDB
randomizing modules, refer to IMS/ESA Customization Guide IMS/ESA
Customization Guide).

anch
Specifies the number of root anchor points desired in each control interval
or block in the root addressable area of an HDAM database. The default
value of this parameter is one. The anch operand must be an unsigned
decimal integer and must not exceed 255. Typical values are from 1 to 5.
Select a two-stage randomizer by specifying the randomizer name in the
mod parameter and 2 in the anchor point parameter.

When a user randomizing routine produces an anchor point number greater
than the number specified for this parameter, the anchor point used is the
highest numbered one in the control interval or block. When a randomizing
routine produces an IMS anchor point number of zero, IMS uses anchor
point one in the control interval or block.

The number of root anchor point for the DEDB is always 1.

24 IMS/ESA V6 Utilities Ref: System



DBDGEN

rbn
Specifies the maximum relative block nhumber value that the user wishes to
allow a randomizing module to produce for this database. This parameter is
for HDAM databases only. This value determines the number of control
intervals or blocks in the root addressable area of an HDAM database. The
rbn operand must be an unsigned decimal integer whose value does not
exceed 224-1. If this parameter is omitted, no upper limit check is
performed on the rbn created by the randomizing module. If this parameter
is specified, but the user’'s randomizing module produces an rbn greater
than this parameter, the highest control interval or block in the root
addressable area is used by IMS. If a user randomizing module produces a
block number of zero, control interval or block one is used by IMS.

In an HDAM or HIDAM OSAM data set, the first bit map is in the first block
of the first extent of the data set. In an HDAM or HIDAM database, the first
control interval or block of the first extent of the data set specified for each
data set group is used for a bit map. In a VSAM data set, the second
control interval is used for the bit map and the first control interval is
reserved. IMS adds one to the block calculated by the randomizer.

bytes
Specifies the maximum number of bytes of database record that can be
stored into the root addressable area in a series of inserts unbroken by a
call to another database record. This parameter is for HDAM databases
only. If this parameter is omitted, no limit is placed on the maximum number
of bytes of a database record that can be inserted into this database’s root
segment addressable area. The bytes operand must be an unsigned
decimal integer whose value does not exceed 224-1. When the “rbn”
parameter is omitted, the “bytes” parameter is ignored, which in turn, leaves
no limit on the number of bytes of a database record that can be inserted
into the root addressable area.

If the “bytes” operand is specified for an HDAM database and the length of
the database record is larger, the remainder of the record is inserted into
the overflow area following the current end-of-file (EOF). This requires that
enough space be available after the current EOF to contain the remainder
of all database records that exceed the “bytes” specification. If sufficient
space is not available in the overflow area following the current EOF, the
database records are inserted randomly in the database.

XClI
Specifies that this DEDB uses the Extended Call Interface when making
calls to the randomizer. This option allows the randomizer to be called in
three different ways. On initialization of IMS or during a /START DB
command, IMS will first load the randomizer and then make an INIT call to
the randomizer to invoke its initialization routines. During a /DBR DB
command, IMS will make a TERM call to the randomizer to invoke the
termination routines before unloading the randomizer. The normal
randomizing call to the randomizer is made when the application issues a
GU or ISRT call on a root segment. The XCI option is only valid for DEDBs.

PASSWD=
Prevents accidental access of IMS databases by non-IMS programs.

YES
Causes DL/l open to use the DBDNAME for this DBD as the VSAM
password when opening any data set for this database. This parameter is
only valid for DBDs that use VSAM as the access method. PASSWD=YES

Chapter 1. Database Description (DBD) Generation 25



DBDGEN

is invalid for ACCESS=LOGICAL, MSDB, or DEDB. When the user defines
the VSAM data sets for this database using the DEFINE statement of MVS
Access Method Services, the control level (CONTROLPW) or master level
(MASTERPW) password must be the same as the DBDNAME for this DBD.
All data sets associated with this DBD must use the same password.

Related Reading:For a description of the use and format of passwords for
VSAM, see refer to MVS Access Method Services.

For the IMS DB/DC system, all VSAM OPENSs bypass password checking
and thus avoid operator password prompting. For the IMS DB system,
VSAM password checking is performed. In the batch environment, operator
password prompting occurs if PASSWD=NO is specified and the data set is
password protected at the control level (CONTROLPW) with passwords not
equal to DBDNAME.

NO
Specifies that the DBDNAME for this DBD should not be used as the VSAM
password. NO is the default.

EXIT=
Specifies that the Data Capture exit routine is used. You can specify multiple
exit routine names on a single DBD statement. You can select different data
options for each exit routine. The order you list the exit routines within the
parameter determines the order the exit routines are called for the segment.

When specified on the DBD statement, the EXIT= parameter applies to all
segments within the physical database. The following physical databases are
supported by this exit routine:

HISAM
HDAM
HIDAM
SHISAM
DEDB

If the exit routine is not specified for a supported database organization or a
supported segment type, DBDGEN fails.

Related Reading: For more detailed information about this exit routine, refer to

IMS/ESA Administration Guide: Database Managei .

The EXIT= parameter can also be specified on the SEGM statement.

exit_name
Specifies the name of the exit routine that processes the data. This operand
is required. The name must follow standard naming conventions. A
maximum of 8 alphanumeric characters is allowed. You can specify an
asterisk (*) instead of an exit routine name to indicate that you want logging
only. If this is done, the logging parameter default is LOG. If you do specify
an exit routine, the logging parameter default is NOLOG. All of the following
operands are optional.

KEY
Specifies the exit routine is passed the physical concatenated key. This key
identifies the physical segment updated by the application.

KEY is the default.

26  IMS/ESA V6 Utilities Ref: System



DBDGEN

NOKEY
Can be specified when the physical concatenated key is not required for the
exit routine.

NOKEY is optional.

DATA
Specifies that the physical segment data is passed to the exit routine for
updating. When DATA is specified and a Segment Edit/Compression exit
routine is also used, the data passed is expanded data.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data. Use
NODATA to avoid the overhead created from saving physical segment data.

NODATA is optional.

NOPATH
Indicates the exit routine does not require data from segments in the
physical root’s hierarchical path. NOPATH is an efficient way to avoid the
processing time needed to retrieve path data.

NOPATH is the default.

PATH
Can be specified when the data from each segment in the physical root’s
hierarchical path must be passed to the exit routine for an updated
segment. Use PATH to allow an application to separately access several
segments for insertion, replacement, or deletion.

You can use the PATH option when information from segments in the path
is needed to compose the DB2 primary key. The DB2 primary key would
then be used in a propagation request for a dependent segment update.
Typically, you need this kind of segment information when the parent
contains the key information and the dependent contains additional data
that would not fit in the parent segment.

You can also use PATH when additional processing is necessary. It could
be that you are not accessing several segments with one call; for example,
you did not invoke the D command code. In this case, additional processing
is necessary if the application is to access each segment with a separate
call.

PATH is optional.

CASCADE
Indicates the exit routine is called when DL/I deletes this segment because
the application deleted a parent segment. Using CASCADE ensures that
data is captured for the defined segment.

Related Reading:For a detailed discussion of delete rules for the Data

CaEture exit routine, refer to i

CASCADE is the default.

Chapter 1. Database Description (DBD) Generation 27



DBDGEN

The CASCADE operand has three suboptions. These suboptions control
the way data is passed to the exit routine. If you specify suboptions, you
must enclose the CASCADE operand and the suboptions within
parentheses.

KEY
Passes the physical concatenated key to the exit. This key identifies the
segment being deleted by a cascade delete.

KEY is the default.

NOKEY
Can be used when the exit routine does not require the physical
concatenated key of the segment being deleted.

NOKEY is optional.

DATA
Passes segment data to the exit routine for a cascade delete. DATA
also identifies the segment being deleted when the physical
concatenated key is unable to do so.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data.
NODATA reduces the significant storage and performance requirements
that result from saving physical segment data.

NODATA is optional.

NOPATH
Indicates the exit routine does not require segment data in the physical
root’s hierarchical path. Use NOPATH to eliminate the substantial
amount of path data needed for a cascade delete.

NOPATH is the default.

PATH
Can be specified to allow an application to separately access several
segments for a cascade delete.

PATH is optional.

NOCASCADE
Indicates the exit routine is not called when DL/l deletes this segment.
Cascade delete is not necessary when a segment without dependents is
deleted.

NOCASCADE is optional.

LOG
Requests that the data capture control blocks and data be written to the
IMS system log.

NOLOG

Indicates that no data capture control blocks or data is written to the IMS
system log.

28 IMS/ESA V6 Utilities Ref: System



DBDGEN

VERSION(character string)
Specifies a character string used to identify the DBD. The exit routine is
passed this character string so it can determine the DBD version used to
update the database.

character string
The character-string length can be up to 255 bytes. There are no
checks to ensure that the proper values have been inserted. Therefore,
it is important that the variable-length character string be updated
whenever the DBD changes.

If you do not specify a character string, a 13-character time stamp is
generated by DBDGEN. It represents the date and time the DBDGEN
was completed. Its format is:

MM/DD/YYHH .MM

Where:

MM The month

DD The day of the month

YY The last two digits of the year
HH The hour on a 24-hour clock
MM The minutes

DATXEXIT=
Allows a user exit, DFSDBUX1, to be used by an application while processing
this database. If no parameter is specified, NO is implied.

YES
Specifies that the user exit, DFSDBUXZ1, is called at the beginning and at
the end of each database call. If DFSDBUX1 is not loaded, IMODULE is
called to load it.

NO
Allows the user exit, DFSDBUX1, to be called, provided DFSDBUX1 is
located in the RESLIB. If DGSDBUX1 does not need to be called again for
the DBD, X'FF’ is returned in the SRCHFLAG field in the JCB, and
DFSDLAOO dynamically marks the DBD as not requiring the exit. In this
case, the user exit is not called again for that DBD for the duration of the
IMS session, unless the DMB is purged from the DMB pool.

DATASET Statements
A DATASET statement defines a data set group within a database.

Requirement:At least one DATASET statement is required for each DBD
generation.

DEDB databases use AREA statements, not DATASET statements (see FarREA

The maximum number of DATASET statements used depends on the type of
database databases can have only one data set group. Data Entry databases can
have 1 to 240 areas defined. HDAM and HIDAM databases can be divided into 1 to

10 data set groups subject to the rules in LEJJJes_tm’_D.MdJ.ng_a_Da.ta.ba.s&m.td
Multiple Data Set Groups” on page 30.

Chapter 1. Database Description (DBD) Generation 29



DBDGEN

In the DBDGEN input deck, a DATASET statement precedes the SEGM statements
for all segments that are to be placed in that data set group. The first DATASET
statement of a DBD generation defines the primary data set group. Subsequent
DATASET statements define secondary data set groups.

Exception:The only exception to the order of precedence is when the LABEL field
of a DATASET statement is used. Refer to llUse of the LAREL Field” on page 31 for
this exception.

Comments must not be added in the subsequent DATASET macro when referring to
a previously defined data set.

Rules for Dividing a Database into Multiple Data Set Groups
HDAM and HIDAM databases can be divided into a maximum of 10 data set groups
according to the following restrictions. Each DATASET statement creates a separate
data set group, except for the case explained in lLise of the | ABE| Field” od

. The first DATASET statement defines the primary data set group.
Subsequent DATASET statements define secondary data set groups.

For HDAM or HIDAM databases, you can use DATASET statements to divide the
database into multiple data set groups at any level of the database hierarchy;
however, the following restriction must be met. A physical parent and its physical
children must be connected by physical child/physical twin pointers, as opposed to
hierarchic pointers, when they are in different data set groups, as shown in

Primary Data Set
Group
SEGMENTA
(Root)
Physical Child ™
SEGMENTB SEGMENTC
(First Level (FirstLevel
Dependent) Dependent)
Physical Child
SEGMENTD _
The connections between SEGMENT (Second Level Physical
AandB, and between C and D Dependent) Twin
must be via physical child. The
connections between multiple
occurrencesofBand D
underone parentmust be by Secondary Data Set
physical twin pointers. Group#1

Figure 5. Connections through Physical Child and Physical Twin Pointers

30 IMS/ESA V6 Utilities Ref: System



DBDGEN

Use of the LABEL Field

In HDAM or HIDAM databases, it is sometimes desirable to place segments in data
set groups according to segment size or frequency of access rather than according
to their hierarchic position in the data structure. To achieve this while still observing
the DBD generation rule that the SEGM statements defining segments must be
arranged in hierarchic sequence,the LABEL field of the DATASET statement is
used.

An identifying label coded on a DATASET statement is referenced by coding the
same label on additional DATASET statements. Only the first DATASET statement
with the common label can contain operands that define the physical characteristics
of the data set group. All segments defined by SEGM statements that follow
DATASET statements with the same label are placed in the data set group defined
by the first DATASET statement with that label.

You can use this capability in much the same manner as the CSECT statement of
MVS assembler language, with the following restrictions:

* Alabel used in the label field of a DATASET statement containing operands
cannot be used on another DATASET statement containing operands.

» Labels must be alphanumeric and must be valid labels for an MVS assembler
language statement.

* Unlabeled DATASET statements must have operands.

Referring to Eigure 5 on page 230, [Mahle 3 illustrates use of the label field of the
DATASET statement to group segment types of the same size in the same data set
groups.

Table 5. Using the Label Field to Group Segment Types

Label Operation Operand
DBD NAME=HDBASE,ACCESS=HDAM,
RMNAME=(RANDMODL,1,500,824)
DSG1 DATASET DD1=PRIMARY,BLOCK=1648
SEGM NAME=SEGMENTA,BYTES=100
DSG2 DATASET DD1=SECOND,BLOCK=3625
SEGM NAME=SEGMENTB,BYTES=50,PARENT=SEGMENTA
DSG1 DATASET NAME=SEGMENTC,BYTES=100,PARENT=SEGMENTA
SEGM
DSG2 DATASET NAME=SEGMENTD,BYTES=50,PARENT=SEGMENTC
SEGM
DBDGEN
FINISH
END

The segments named SEGMENTA and SEGMENTC exist in the first data set
group. The segments named SEGMENTB and SEGMENTD exist in the second
data set group.

The format of the DATASET statement for each database type is shown in the
following examples. The parameters are described in LDATASET Statement

Chapter 1. Database Description (DBD) Generation 31



DBDGEN

32

DATASET Statement for HSAM Database

»»>—DATASET—DD1=ddnamel— ,DD2=ddname2

| 2

L, BLOCK=(blkfactl,blkfact2)

(1)

L,RECORD:(recZenI ,reclen2)

Notes:

(1)

1 If you do not specify a value, DBDGEN generates the value used.

DATASET Statement for GSAM Database

»»—DATASET—DD1=ddnamel

»
>

I—, DD2=ddname2—| L

,BLOCK=(blkfactl)

(1)

L,SIZE=size1

Notes:

L, RECORD=(reclenl,reclen2)

(1)

(1)

(2)

,RECFM=recfml——— >«

1 If you do not specify a value, DBDGEN generates the value used.
2 RECFM is only valid for a GSAM database.

DATASET Statement for HISAM Database

»»—DATASET—DD1=ddnamel—,0VFLW=ddname3

\

(1)

\/

,BLOCK=(blkfactl,blkfact2)

Y

(2)

L,SIZE=(size1 ,s1ze2)

\/

(2) (3)

L ,RECORD=(reclenl,reclen2)

Notes:

(2)

1 If a HISAM database has only one segment type defined, you do not need to
specify OVFLW. OVFLW is invalid in a simple HISAM database.

If you do not specify a value, DBDGEN generates the value used.

3 The valid parameter specifications for a SIZE keyword are 512 bytes, 1KB,
2KB, 4KB, 8KB, and multiples of 2KB up to 28KB.

IMS/ESA V6 Utilities Ref: System



DATASET Statement for HDAM Database

DBDGEN

»»—DATASET—DD1=ddname!l
(1)

L,BLOCK=51’ze0 L,SIZE=(,5ize1)

(2)

] l—,SCAN=cyls—| I—,FRSPC=(fbff,fspf)—| L,SEARCHA=—E0}—/
1
2

Notes:

1 If you do not specify a value, DBDGEN generates the value used.

2 The valid parameter specifications for a SIZE keyword are 512 bytes, 1KB,

2KB, 4KB, 8KB, and multiples of 2KB up to 28KB. To ensure future

compatibility, use only CI sizes that are multiples of 4KB.

DATASET Statement for HIDAM Database

\/

»»—DATASET—DD1=ddname!l
(1)

L,BLOCK=51’ze0 L,SIZE=(,size1)

(2)

] l—,SCAN=cyls—| l—,FRSPC=(fbff,fspf)—| L,SEARCHA=—E0}—/
1
2

Notes:

1 If you do not specify a value, DBDGEN generates the value used.

2 The valid parameter specifications for a SIZE keyword are 512 bytes, 1KB,

2KB, 4KB, 8KB, and multiples of 2KB up to 28KB. To ensure future

compatibility, use only CI sizes that are multiples of 4KB.

DATASET Statement for MSDB Database

A\
A

»»—DATASET—, REL= (——NO )

TERM
L, fldnmJ
FIXED
L, fldnm—l

DYNAMIC—L——I—
, fldnm

DATASET Statement for INDEX Database
(1)

\/

»»—DATASET—DD1=ddnamel—,0VFLW=ddname3

Chapter 1. Database Description (DBD) Generation 33



DBDGEN

\

\/

(2) (2) (3)

L,BLOCK= (blkfactl,blkfact2) L,SIZE=(size1 ,size2)

A\
v
A

(2)

L,RECORD:(recZenI ,reclen2)

Notes:

1 If the keys of all the index segments are unique, you do not need to specify
OVFLW.

If you do not specify a value, DBDGEN generates the value used.

3 The valid parameter specifications for a SIZE keyword are 512 bytes, 1KB,
2KB, 4KB, 8KB, and multiples of 2KB up to 28KB. To ensure future
compatibility, use only CI sizes that are multiples of 4KB.

DATASET Statement for LOGICAL Database

»»—DATASET—LOGICAL

v
A

DATASET Statement Parameter Description

DATASET
Identifies this as a DATASET control statement for a DL/I database.

LOGICAL
Indicates a logical database is being defined in this DBD generation. This
operand must be specified if the ACCESS=LOGICAL operand is specified on
this DBD generation’s DBD statement. If LOGICAL is specified, all other
operands are invalid; this must be the only DATASET statement for the DBD
generation. The SEGM statements that follow this statement can only specify
NAME=, PARENT=, and SOURCE= operands. No FIELD, XDFLD, or LCHILD
statements can be used in a LOGICAL DBD generation.

DD1=
Specifies the ddname of the primary data set in this data set group. ddnamel
must be a 1- to 8-character alphanumeric name. IMS use of the data set
indicated by this operand depends on the type of database being defined as
shown in the following list:

Database Type Use of the DD1= operand

HSAM ddname of input data set

GSAM ddname of input data set

HISAM ddname of primary data set in data set group
HIDAM ddname of data set in data set group

HDAM ddname of data set in data set group

MSDB Operand is invalid

DEDB Name of defined area

INDEX ddname of primary data set

34  IMS/ESA V6 Utilities Ref: System



DBDGEN
LOGICAL Operand is invalid

For an HSAM or GSAM database, this input data set is used when an
application program retrieves data from the database.

DEVICE=
Specifies the physical storage device type on which the data set in this data set
group is stored.

The default is 3380. If you code any other device, it will be ignored.

DD2=
Specifies the 1- to 8-character alphanumeric ddname of the output data set
required for an HSAM or simple HSAM database and optional for a GSAM
database. If it is omitted, ddname1l is assumed. This output data set is used by
HSAM or GSAM when loading the database.

OVFLW=
Specifies the 1- to 8-character alphanumeric ddname of the overflow data set in
this data set group. This operand must be specified for:

* An INDEX database that contains index pointer segments with nonunique
keys

» All data set groups of a HISAM database except when only one segment
type is defined in the HISAM database

The ddnames used in DD1, DD2, or OVFLW subparameters must be unigue
within an IMS system or account. Nonunique ddnames in two or more DBDs
might result in destruction of the database. One situation that can result in
destruction of a database is if both ddnames were inadvertently used
concurrently (both used in two different message regions of a data
communications system or in two PCBs of one PSB used in a batch DL/I region
of a database only system).

The following restrictions apply:

* The OVFLW operand is not allowed when a simple HISAM database is
defined.

* When a HISAM database that contains only one segment type is defined, the
OVFLW operand does not have to be specified.

* No OVFLW operand on the DATASET statement is required for the index
DBD because all index segments are inserted in the key sequenced data set
of the index.

BLOCK=
Is used to specify the blocking factors (blkfactl, blkfact2) to be used for data
sets in a data set group for HSAM, SHSAM, GSAM, HISAM, SHISAM, and
INDEX databases, or is used to specify the block size or control interval size
without overhead (size0) for the data set in a data set group for HDAM and
HIDAM databases. Tahle 6 on page 38 explains the use of the BLOCK=and
RECORD=operands.

For HISAM, SHISAM, and INDEX databases that use VSAM as the MVS
access method, use the SIZE= operand to specify control interval size in place
of the BLOCK= operand. If the SIZE= keyword is used for a HISAM, SHISAM,
or INDEX database, the BLOCK= keyword is invalid.

In cases where the RECORD= and BLOCK= operands are used, the resulting
control interval size must be a multiple of 512 when the resulting size is less

Chapter 1. Database Description (DBD) Generation 35



DBDGEN

36

than 8192 bytes. If the product of the record length specified times the blocking
factor specified plus VSAM overhead is not a multiple of 512 and is less than
8192 bytes, the resulting control interval size is obtained by rounding the value
up to the next higher multiple of 512. Control interval sizes from 8192 to 30720
bytes (maximum allowed size) must be in multiples of 2048 bytes. When the
product of the RECORD= and BLOCK= operands plus VSAM overhead is from
8192 to 30720 bytes but is not a multiple of 2048, the resulting control interval
size is obtained by rounding the value up to the next higher multiple of 2048.

The VSAM overhead is 7 bytes if the blocking factor is 1; otherwise, it is 10
bytes. The maximum block size for OSAM data sets is 32KB.

For HDAM and HIDAM databases, the BLOCK= operand is used to enable you
to override DBDGEN'’s computation of control interval or block size. However, in
addition to the value specified in the BLOCK= operand, DBDGEN adds space
for root anchor points, a free space anchor point, and access method overhead.
The block or control interval size that results can be determined by referring to
the equations in the description of the SIZE= operand or by examining the
output of DBDGEN. If SIZE= is not specified and the access method is VSAM,
DBDGEN calculates the best VSAM LRECL value by equally distributing any
unused space in the CI to each logical record in the ClI. If SIZE= is specified or
the database is SHISAM, this is not done.

Table 6. BLOCK= and RECORD= Operands
Database Type Use of BLOCK= and RECORD= Operands
HSAM

BLOCK=
blkfactl applies to input data set and should always be 1.

blkfact2 applies to output data set and should always be 1.

RECORD=
reclenl is the input record length.

reclen2 is the output record length.

HSAM is always unblocked; LRECL and BLKSIZE are equal.

GSAM BLOCK=

blkfactl applies to input/output data set.

blkfact2 is an invalid subparameter.

RECORD=
reclenl is the size of an LRECL length or maximum size for a
variable length record.

reclen2 is the minimum size for a variable length record.

SIZE=
sizel is the BLKSIZE for input/output data set.

size2 is an invalid subparameter.

IMS/ESA V6 Utilities Ref: System



DBDGEN

Table 6. BLOCK= and RECORD= Operands (continued)
Database Type Use of BLOCK= and RECORD= Operands
HISAM

BLOCK=
blkfactl is the primary data set blocking factor.

blkfact2 is the overflow data set blocking factor.

RECORD=
reclen 1 is the data set logical record length.

reclen2 is the overflow data set logical record length.

HIDAM HDAM BLOCK=

size0 is size without overhead of OSAM or VSAM data set
group

RECORD=
Is ignored.

MSDB BLOCK= and RECORD= operands are invalid
DEDB BLOCK= and RECORD= operands are invalid.
INDEX

BLOCK=
blkfactl is the primary data set blocking factor.

blkfact2 is the overflow data set blocking factor.

RECORD=
reclenl is the primary data set logical record length.

reclen2 is the overflow data set logical record length.

LOGICAL BLOCK= and RECORD= operands are invalid.

Note: When both reclenl and reclen2 are specified in a DATASET statement, reclen2 must
be equal to or greater than reclenl, except for GSAM.

SIZE=
Is used to override DBDGEN's computation of control interval or block size. If
the value specified for SIZE= is different from the control interval size defined to
VSAM using the Access Method Services, DL/I uses the value defined to
VSAM.

For DL/I DBDs, you can effectively modify the DBD without a DBDGEN by
redefining the control interval size to VSAM using the Access Method Services.
This allows you to migrate databases to new devices without a DBDGEN. When
used, no overhead is added to the values specified and the value specified is
not validated by IMS.

For VSAM data sets, when the values specified are less than 8192, they must
be a multiple of 512. If not a multiple of 512, DBDGEN rounds the value
specified to the next higher multiple of 512 and issue a warning message.
Values specified in the range of 8192 to 30720 bytes (maximum allowed size)
must be a multiple of 2048. If not a multiple of 2048, DBDGEN rounds the value
specified to the next higher multiple of 2048 and issue a warning message.

Chapter 1. Database Description (DBD) Generation 37



38

DBDGEN

For HISAM, SHISAM, primary HIDAM index, and secondary index databases,
sizel specifies the control interval or block size of the primary data set in a data
set group, and size2 specifies the control interval or block size of the overflow
data set.

For HDAM and HIDAM databases, only the sizel operand is used. The sizel
operand specifies the control interval or block size of the data set in the data
set group.

When SIZE is specified for a HISAM or INDEX database, the RECORD
parameter must also be specified; the size value specified must be a multiple of
the record parameter in order to allow VSAM to open the data sets involved.
Following are equations that show the minimum block or control interval size
that you can specify for databases.

The maximum block size of OSAM data sets is 32767 bytes. An OSAM data set
with an even length blocksize has an 8 gigabyte size limit. If the database is
saved with image copy, 32752 bytes is the maximum amount that can be
specified for the block size. Image copy processing module DFSUDMPO adds
15 bytes to the block size for double-word alignment of its prefix, and the block
size cannot exceed 32767. If the DBDGEN ultility specifies the block size, 32752
bytes is the maximum amount specified.

Calculating SIZE= for HISAM Primary Data Set Groups, Primary HIDAM
Index, and Secondary Index Data Set Groups

For the primary data set group of a HISAM or INDEX database, the minimum
control interval size that can be specified for the primary data set is given by
primary size and for the overflow data set by overflow size. The overflow data
set is not always required in the data set group.

primary size = ROOTSEG + OVERHEAD + VSAM CONTROL

overflow size = MAXSEG + OVERHEAD + VSAM CONTROL

ROOTSEG=
Maximum root segment size including the segment prefix. An INDEX VSAM
root segment prefix does not include a segment code, unless it was created
using DL/I DOS.

OVERHEAD=
Number of bytes required is:

7 Used for OSAM, if the database has more then one physical
segment type

3 Used for OSAM, if the database has only one physical segment
type

4 Used for INDEX VSAM databases with nonunique root segment
keys

0 Used for INDEX VSAM databases unique root segment keys, not

created using DL/I DOS.

5 bytes for all other VSAM databases.

VSAM CONTROL=
Number of bytes required is:

0 Used for OSAM, if the blocking factor is 1

IMS/ESA V6 Utilities Ref: System



DBDGEN

7 Used for VSAM if the blocking factor is 1
10 Used for all other cases
MAXSEG=

Length in bytes of the longest segment in this data set group including the
segment prefix.

Calculating SIZE= for HDAM Primary Data Set Group

The minimum block or control interval size that you can specify for the primary
data set group of an HDAM database is dependent on whether or not the DBD
statement rbn operand of the RMNAME parameter is specified.

» If rbn is specified, then the following two conditions must be met:
size = (RAPs*4) + FSEAP + 2 + VSAM CONTROL
size =z MAXSEG + FSEAP + VSAM CONTROL

» If rbn is not specified, then the following condition must be met:
size = MAXSEG + (RAPs*4) + FSEAP + VSAM CONTROL

RAPs=

Number of root anchor points specified for the root addressable area of the
database.

FSEAP=
4 bytes for a free space element anchor point.

VSAM CONTROL=
0 bytes for OSAM; 7 bytes for VSAM.

MAXSEG=
Length in bytes of the longest segment in this data set group including the
segment prefix.

Calculating SIZE= for HDAM Secondary Data Set Groups
size = MAXSEG + FSEAP + VSAM CONTROL

MAXSEG=
Length in bytes of the longest segment in this data set group including the
segment.

FSEAP=
4 bytes for a free space element anchor point.

VSAM CONTROL=
0 bytes for OSAM; 7 bytes for VSAM.

Calculating SIZE= for HIDAM Data Set Groups

The minimum block or control interval size that you can specify for data set
groups in a HIDAM database is dependent on the MVS access method
specified. The block or control interval size of the primary data set group is also
dependent on the type of pointers specified for the root segment type.

If you specify forward-only hierarchic or physical twin pointers for the root
segment type of a HIDAM database, the block or control interval size specified
for the primary data set group must be:

size = MAXSEG + FSEAP + RAP + VSAM CONTROL

Chapter 1. Database Description (DBD) Generation 39



DBDGEN

Under any other conditions for primary or secondary data set groups, the block
or control interval size specified must be:

size =z MAXSEG + FSEAP + VSAM CONTROL
MAXSEG=

Length in bytes of the longest segment in this data set group including the
segment prefix.

FSEAP=
4 bytes for a free space element anchor point.

VSAM CONTROL=
0 bytes for OSAM; 7 bytes for VSAM.

RAP=
4 bytes for one root anchor point.

RECORD=(reclenl,reclen2)

Specifies the data management logical record lengths to be used for this data
set group. This operand is optional and cannot be specified if
ACCESS=LOGICAL is used on the DBD statement. reclen1 and reclen2 must
be numeric values. The value of reclen2 must always be equal to or greater
than the value of reclenl except for GSAM databases. The meaning of each of
the operand’s parameters depends on the type of database being defined as
shown in [[able 6 on page 36. For a simple HISAM database, the logical record
length specified must be the same as the segment length specified. The
minimum allowable logical record lengths for HISAM and INDEX DBDs are the
same as the minimum block or control interval sizes described for the
DATASET SIZE= operand, except that VSAM CONTROL should be ignored. In
addition, for both the VSAM KSDS and ESDS for HISAM, and INDEX DBDs,
the logical record length specified must also be an even value. For VSAM
primary index (INDEX, VSAM) databases, the overflow logical record length
(reclen2) parameter should not be defined, because all index segments are
inserted into the key sequence data set. For a GSAM database, reclenl
specifies the size of a logical record for a fixed-length record or the maximum
size for a variable-length or undefined record. The value of reclen2 specifies the
minimum size for a variable-length or undefined record.

RECFM=

Specifies the format of the records in the data set. The record format is
specified using the characters defined below:

F The records are fixed-length.

FB The records are fixed-length and blocked.

\% The records are variable-length.

VB The records are variable-length and blocked.
U The records are of undefined length.

This operand is only valid for a GSAM database.

SCAN=cyls

Specifies the number of direct-access device cylinders to be scanned when
searching for available storage space during segment insertion operations. This
operand is optional. It is only used when this DBD generation defines a HIDAM
or HDAM database. If specified, cyls must be a decimal integer whose value
does not exceed 255. Typical values are from 0 to 5. The default value is 3. If
SCAN=0 is specified, only the current cylinder is scanned for space.

40 IMS/ESA V6 Utilities Ref: System



DBDGEN

Scanning is performed in both directions from the current cylinder position. If a
scan limit value causes scanning to include an area outside of the current
extent, IMS adjusts the scan limits so that scanning does not exceed current
extent boundaries. If space cannot be found for segment insertion within the
cylinder bounds defined by this operand, space is used at the current end of the
data set group for the database.

FRSPC=
Specifies how free space is to be distributed in an HDAM or HIDAM database.
The free block frequency factor (fbff) specifies that every nth control interval or
block in this data set group is left as free space during database load or
reorganization (where fbff=n). The range of fbff includes all integer values from
0 to 100 except fbff=1. The fspf is the free space percentage factor. It specifies
the minimum percentage of each control interval or block that is to be left as
free space in this data set group. The range of fspf is from 0 to 99. The default
value for fbff and fspf is 0. If the total of the percentage of free space specified
and any segment size exceeds the control interval or block size, a warning
message that flags oversized segments is issued by DBDGEN. When loading
oversized segments, the “fspf’ specification is ignored and one control interval
or block is used to load each oversized segment.

When you specify the first operand, FBFF, realize that a smaller value increases
the frequency of free space in the database. A value of 2, for example, would
mean that after every piece of data there would be a free space block. This
causes system performance degradation when running reorganization or load
utilities because of the extra processing required for the free space blocks.

SEARCHA=
Specifies the type of HD space search algorithm that IMS uses to insert a
segment into an HD database.

0 Specifies that IMS chooses which HD space search algorithm to use. This
is the default. For this release, IMS uses the same algorithm it would use if
you had specified SEARCHA=2.

1 Specifies that IMS uses the HD space search algorithm that does not
search for space in the second-most desirable block or CI.

2 Specifies that IMS uses the HD space search algorithm that includes a
search for space in the second-most desirable block or CI.

Related Reading: For more information about the HD space search algorithm,

refer to IMS/ESA Administration Guide: Database Managei.

REL=
Defines whether an MSDB is a non-terminal-related (NO or TERM) or a
terminal-related (FIXED and DYNAMIC) MSDB. There is no ownership of
segments in non-terminal-related MSDBs.

MSDBs with terminal-related keys are not supported for ETO in IMS/ESA V5 or
above. Other types of MSDBs are still supported.

With terminal-related MSDBs, each segment is assigned to a different LTERM.
The LTERM name is the segment key but is not contained in the segment.
Each LTERM owns no more than one segment per MSDB, and only the owner
can alter a segment.

Chapter 1. Database Description (DBD) Generation 41



DBDGEN

NO
Specifies a non-terminal-related MSDB without terminal-related keys. The
key and the sequence field are part of the segment.

TERM
Specifies a non-terminal-related MSDB with terminal-related keys. The key
is the LTERM name (not part of the segment) and there is no sequence
field.

FIXED
Specifies a terminal-related fixed MSDB. The LTERM name is the segment
key. Segment updates are allowed. Segment insertions and deletions are
not allowed.

DYNAMIC
Specifies a terminal-related dynamic MSDB. The LTERM name is the
segment key. Segments can be inserted and deleted. No more than one
insertion or deletion can be made to the same MSDB from a single LTERM
within one sync processing interval.

search field name
Specifies a 1- to 8-character alphanumeric name. The name must not be
the same as any other field name defined in a FIELD statement.

Because a sequence field cannot be defined for an MSDB using an LTERM
name as a segment key (REL=TERM, FIXED, or DYNAMIC), a search field
name is provided to allow qualified calls. The only valid value in an SSA is
an LTERM name. Therefore, the search field is treated as an 8-byte
character field and no further definition is provided.

Data Sets in IMS Data Set Groups

The DD statements for the data sets in each IMS database must be provided with
each job that accesses the database. For databases used by message or batch
message processing programs, you must include DD statements in the JCL for the
IMS control region. For databases which are used exclusively in the batch
processing environment, you must include DD statements in the JCL for the batch
processing region. In an MVS online environment, databases can be dynamically
allocated.

DD Statements Required in the VSAM Operating System
When the operating system access method for a database is VSAM, one DD
statement is required for each KSDS and one for each ESDS. The parameters
required on the DD statements have the following format:

//ddname DD DISP=SHR,DSNAME=

Since all VSAM data sets are cataloged, UNIT=, VOL=SER=, and SPACE=
parameters are not required.

For a HISAM database, two DD statements are required: one for the KSDS and
one for the ESDS. If the HISAM database has only one segment type defined, only
the KSDS DD statement is required.

For an HDAM or HIDAM database, one DD statement is required for each data set
group. For the prime index of a HIDAM database one DD statement is required for
the KSDS.

For secondary index databases with unique keys one DD statement is required for
the KSDS.

42 IMS/ESA V6 Utilities Ref: System



DBDGEN

For secondary index databases with nonunique keys, two DD statements are
required; one for the KSDS and one for the ESDS. In addition to the DD statements
defining VSAM data sets, a DD statement specifying a data set containing
parameters defining the IMS VSAM buffer pool must be provided for batch regions.
The DDNAME for this DD statement is DFSVSAMP. For online IMS execution, this
information is provided in a member of the IMS.PROCLIB data set with member
name DFSVSMxx.

Related Reading:For more information on the IMS.PROCLIB data set, refer to

DD Statements Required in the OSAM Operating System
Related Reading:Operating system procedures for execution of all IMS region

types are provided in IMS/ESA Customization Guide. The appropriate DD

statements must be appended to these procedures.

For HSAM, you must provide a DD statement for either input or output in the
following format:

//ddname DD DSNAME= ,UNIT= ,VOL=SER= ,
// DISP=  ,DCB=

Where the DD statement is for an HSAM output data set, the data set must be
preallocated, or the SPACE= operand must be present when a direct-access
storage device is used.

RECFM=FB is optional, but if used, must be specified at load time. RECFM=F must
not be specified.

For an OSAM data set, the LRECL, BLKSIZE, and BUFL subparameters of the
DCB parameter should be omitted. This information is obtained from the DBD and
cannot be overridden.

For HDAM or HIDAM, a DD statement is required for the OSAM data set of each
data set group. The format is as follows:

//dd1 DD DSNAME= ,UNIT= ,VOL=SER=
// DISP= ,DCB=(DSORG=PS[,0PTCD=W])

When the HDAM or HIDAM database is being created, the OSAM data set must be
preallocated, or the SPACE= operand must be present.

If a model DSCB is to be used to describe a generation data set, the LRECL,
RECFM, and BLKSIZE parameters must be omitted from the model DSCB. This
information is obtained from the DBD and cannot be overridden.

AREA Statement

DEDB databases use an AREA statement to define an area within a database. In
the DBDGEN input deck for a DEDB, all AREA statements must be placed between
the DBD statement and the first SEGM statement. At least one AREA statement is
required, but as many as 240 AREA statements can be used to define multiple
areas.

An example of the AREA statement follows. The parameters are explained in

q H H ”

Chapter 1. Database Description (DBD) Generation 43



DBDGEN

AREA Statement for DEDB Databases

(1)
»»—AREA—DD1=ddnamel—,S1ZE=sizel

,UOW= (numberl ,overflowl) >

»—,R00T=(number2 ,overflow?2)

v
A

Notes:

1 The valid parameter specifications for a DEDB SIZE keyword are 512 bytes,
1KB, 2KB, 4KB, 8KB and multiples of 4KB up to 28KB. To ensure future
compatibility, use only C1 sizes that are multiples of 4KB.

AREA Statement Parameter Description

AREA
Identifies this statement as a DEDB AREA control statement.

DD1=
Specifies the ddname of the defined area. ddnamel must be a 1- to 8-character
alphanumeric name. This parameter can be an area name or a ddname for
single area data sets but can only be an area name for multiple area data sets.
If the database is registered in DBRC, this parameter should specify the area
name.

DEVICE=
Specifies the physical storage device type on which the data set in this area is
stored. The default is 3380. If you code any other device, it will be ignored.

SIZE=
Specifies the control interval. Size can be 512 bytes, 1KB, 2KB, 4KB, and 8KB
and multiples of 4KB up to 28KB. For future compatibility, only ClI sizes that are
multiples of 4KB should be used. No default value is allowed.

Restriction: 4KB cannot be specified with a 2319 device.

For DEDBs, the DBDGEN SIZE= must match the control interval size defined to
VSAM, because IMS uses this value in accessing the data set. If the control
interval size is changed in the VSAM data set, the DBD for that area must be
changed to the new SIZE= value.

uow=
Specifies the number of control intervals in a unit of work (UOW). The UOW=
parameter has two operands, numberl and overflowl.

numberl
Specifies the number of control intervals in a unit of work (UOW). Its value
must be from 2 to 32767.

overflowl
Specifies the number of control intervals in the overflow section of a UOW.
Overflowl can be any value greater than or equal to one but at least one
less than the specified value for numberl.

44  IMS/ESA V6 Utilities Ref: System



DBDGEN

The total number of root anchor points (RAPs) within one UOW is given by
numberl minus overflowl. Multiply the number of RAPs in one UOW by the
number of UOWSs in the root addressable part to find the total number of RAPs
within an area.

ROOT=
Specifies characteristics of a DEDB area. The ROOT= parameter has two
operands, number2 and overflow2.

number2
Specifies the total space allocated to the root addressable part of the area
and to the area reserved for independent overflow. It is expressed in
UOWSs. The rest of the VSAM data set is reserved for sequential dependent
data. The value must be greater than 2 and less than 32767, it cannot be
larger than the amount of space actually in the VSAM data set.

overflow2
Specifies the space reserved for independent overflow in terms of UOWs. It
must be at least one and must be less than the value specified for
number2. Although independent overflow does not contain UOWSs, the UOW
size is used as the unit for space allocation.

The reorganization UOW is automatically allocated by the DEDB
Initialization utility. VSAM space definition should include this additional
UOW. That is, the total space required is the root addressable area, the
independent overflow, and one additional UOW for reorganization.

Example:This example allocates 2048*64*936 bytes and leaves the rest of
the area for sequential dependent segments.
AREA DD1=XX,SIZE=2048,

UoW=(64,14),

RO0T=(936,36)

Because there is only one root anchor point (RAP) per control interval, the
total number of RAPs within the area is given by: (64-14)*(936-36) = 45000
RAPs.

The amount of space allocated for independent overflow by DBDGEN can be
increased while IMS is online.

Related Reading: For more information about this procedure, refer to [MS/ESA

Administration Guide: Database Managei.

SEGM Statement

The SEGM statement defines a segment type, the segment’s position in a database
hierarchy, the physical characteristics of the segment, and how the segment is to be
related to other segments. Except for GSAM databases, at least one SEGM
statement must immediately follow each DATASET statement; the segment defined
by the SEGM statement is placed in the data set group defined by the DATASET
statement. Except for MSDBs and DEDBs, a maximum of 255 SEGM statements
are allowed in a DBD generation. For a MSDB, only one SEGM statement can be
specified. For a DEDB, at least one and up to 127 SEGM statements must
immediately follow the last AREA statement; no other SEGM statements can be
provided in the DBD generation. SEGM statements must be placed in the input
deck in hierarchic sequence, and a maximum of 15 hierarchic levels can be
defined.

Chapter 1. Database Description (DBD) Generation 45



DBDGEN

The SEGM statement is used with FIELD, XDFLD and LCHILD statements to totally
define a segment to IMS. The FIELD statement defines fields within segments, the
XDFLD statement defines fields used for secondary indexing, and the LCHILD
statement defines index or logical relationships between segments.

The format of the SEGM statement for each database type is shown in the following
examples. The parameters are explained in £

SEGM Statement for HSAM Databases

(1)
»»—SEGM—NAME=segnamel— , PARENT=——segname?2- ,BYTES=max bytes——»
0

v
A

I—, FREQ=frequency—|

Notes:

1 The PARENT=keyword can be omitted, or PARENT=0 can be specified for
the root segment type of a database.

SEGM Statement for HISAM Databases

»»—SEGM—NAME=segnamel— ,PARENT= >

(1)
»——(segname? L ) >

,VIRTUAL (2)
(—Ipsegname. [ _|_| ,dbnamel—)
,PHYSICAL

(<=}

»—,BYTES=max bytes >
|—,min byltesJ |—,FREQ=frequench

(2)

,POINTER= » LPARNT
,PTR= » CTR——
»PAIRED—

Yy
4

LRULES_ (2) ( ELAST] (3) )J
1 1 o] oFIRT
o O ] oHERE

46 IMS/ESA V6 Utilities Ref: System



DBDGEN

(4) —NONE
—EXIT=————(— A H C | )

v

s

——qAp—— ¢}

»
>

A\
A

(5) ,DATA (6)
L,COMPRTN= (—routinename |_,KEY _l , INIT—,MAX—)
A:
(7)

*-

- Covctrmel s ;
i:,LOG—
,NOLOG—
B:
| I
—, KEY—— —, PATH— —,DATA—
—,NOKEY— —,NOPATH— —,NODATA—
C:
(8)

| I

,CASCADE:

,NOCASCADE———

,(CASCADEE B g)—

, (NOCASCA E-| r)—
Notes:

1 The PARENT=keyword can be omitted, or PARENT=0 can be specified for
the root segment type of a database.

2 Required for HISAM logical relationships; otherwise, it is optional.

3 Required when a segment type does not have a unique sequence field. LAST
is the default. When using Fast Path sequential dependent segment
processing, the insert rule of FIRST is always used and cannot be overridden.

4 Used for the Data Capture exit routine. You can specify more than one exit
routine on a SEGM statement.

5 Used for Segment Edit/Compression exit routine with full-function and DEDB
databases.

6 Variable-length segments and segment edit/compression cannot be specified
for a simple HISAM database.

Chapter 1. Database Description (DBD) Generation 47



DBDGEN

7 If an exit routine is not required because only logging is being requested,

specify the exit name as * and the default logging parameter is LOG. If you
do specify an exit routine name, the default logging parameter is NOLOG.

8 Used to control the CASCADE options.

SEGM Statement for HDAM Databases

»»>—SEGM—NAME=segnamel—,PARENT=

l—,SNGL (1)
»——(segname?2: >
L,DBLEJ L |—,VIRTUAL—| (2)
(—Ipsegname. ,dbnamel—)
|—,PHYSICALJ
L0
»—,BYTES=max bytes I >
I—,min bytes—
(3) (2)
,POINTER= HIER LLTWIN , LPARNT
|:,PTR=—| HIERBWD— |—,LTWINBWDJ t,CTR—
TWIN— ,PAIRED-
TWINBWD—|
NOTWIN—
2) JLAST—  (4) J
IS T @
L L L ,FIRST
|_P_| |_P_| |_P_| ,HERE

Ly tvj Ly

B
(5) —NONE
»—EXIT= (——| A H C i ) >
——{Ap | Cf
». >«
(6) ,DATA
L,COMPRTN= (—routz’nename—E, KEYJ—, INIT—,MAX—) ——
A:

(7)
Lol

48 IMS/ESA V6 Utilities Ref: System

B |
i:’ L0G—
,NOLOG—



DBDGEN
B:

|
| |
i:’ KEYﬂ i: PATHﬂ |:,DATA—
NOKEY ,NOPATH ,NODATA—

C:
(8)
| I
,CASCADE
,NOCASCADE
,(CASCADEE B g)—
, (NOCASCA E-| r)—
Notes:

1 The PARENT=keyword can be omitted, or PARENT=0 can be specified for
the root segment type of a database.

2 Required for HDAM logical relationships; otherwise, it is optional.
Optional for HDAM logical relationships.

4 Required when a segment type does not have a unique sequence field. LAST
is the default. When using Fast Path sequential dependent segment
processing, the insert rule of FIRST is always used and cannot be overridden.

5 Used for the Data Capture exit routine. You can specify more than one exit
routine on a SEGM statement.

6 Used for Segment Edit/Compression exit routine with full-function and DEDB
databases.

7 If an exit routine is not required because only logging is being requested,
specify the exit name as * and the default logging parameter is LOG. If you
do specify an exit routine name, the default logging parameter is NOLOG.

8 Used to control the CASCADE options.

SEGM Statement for HIDAM Databases

»»>—SEGM—NAME=segnamel—,PARENT= >
, SNGL. (1)
»——(segname2 ) >
I—,DBLEJ L l—,VIRTUAL—l (2)
(—Lpsegname. ,dbnamel—)

I—, PHYSICAL—|

0

»—,BYTES=max bytes >
I_ mi J
,min bytes

Chapter 1. Database Description (DBD) Generation 49



DBDGEN

(3) (2)
,POINTER= HIER ,LTWIN ,LPARNT

L prRe— ] HIERBWD—| L. LTWINBWD— t,CTR—
TWIN—]| ,PAIRED—
TWINBWD—|
NOTWIN—

L 2) AT (@) J
,RULES= ( )

-
L L L ,FIRST
i e

B
(5) —NONE
»—EXIT= (——| A H C i )
AP O

».

(6) ,DATA
L,COMPRTN= (—routz’nename—E, KEYJ—, INIT—,MAX—) ——

A:

(7)
}—[:m—‘ B | |:LOG_

,NOLOG—

B:

|

[
t, KEYﬂ i:, PATHﬂ i:,DATA—
NOKEY ,NOPATH ,NODATA-

(8)

,CASCADE
»NOCASCADE————

,(CASCADEE B &)—
, (NOCASCA E-| r)—

Notes:

1 The PARENT=keyword can be omitted, or PARENT=0 can be specified for
the root segment type of a database.

50 IMS/ESA V6 Utilities Ref: System



DBDGEN
Required for HIDAM logical relationships; otherwise, it is optional.
Optional for HIDAM logical relationships.

4 Required when a segment type does not have a unique sequence field. LAST
is the default. When using Fast Path sequential dependent segment
processing, the insert rule of FIRST is always used and cannot be overridden.

5 Used for the Data Capture exit routine. You can specify more than one exit
routine on a SEGM statement.

6 Used for Segment Edit/Compression exit routine with full-function and DEDB
databases.

7 If an exit routine is not required because only logging is being requested,
specify the exit name as * and the default logging parameter is LOG. If you
do specify an exit routine name, the default logging parameter is NOLOG.

8 Used to control the CASCADE options.
SEGM Statement for MSDB Databases

»»—SEGM—NAME=segnamel—,BYTES=max bytes > <

SEGM Statement for DEDB Databases

|—,SNGL—| (1)
»»—SEGM—NAME=segnamel—, PARENT=—— (segname2 |_ J ) >
T ,DBLE
Lo
DIR
J: (2)
»—,BYTES=max bytes,min bytes—,TYPE=——SEQ >
—HERE (3)
\\,RULES‘ LAST_|
—FIRST—|
(4) —NONE

v

>—L——|—n—EXIT=—(— A Ct )
,SSPTR= _I ,H |

(5) ,DATA
»—,COMPRTN= (—routinename |_ _| )

A\
A

Chapter 1. Database Description (DBD) Generation 51



DBDGEN

A:

» LOG—

(6)
}—[:m—‘Biii |

,NOLOG—

B:
| I
t,KEYﬂ i:,PATHﬂ ,DATA—
,NOKEY ,NOPATH ,NODATA—
C:
(7)

| I
,CASCADE
,NOCASCADE
,(CASCAD% B Ig)—

, (NOCASCA E-| r)—

Notes:

1 The PARENT=keyword can be omitted, or PARENT=0 can be specified for
the root segment type of a database.

2 TYPE=SEQ is required on SEGM statements for the sequential dependent
type.

3 Required when a segment type does not have a unique sequence field.
HERE is the default. When using Fast Path sequential dependent segment
processing, the insert rule of FIRST is always used and cannot be overridden.
For DEDB direct dependent segment processing, HERE is the default.

4 Used for the Data Capture exit routine. You can specify more than one exit
routine on a SEGM statement.

5 Used for Segment Edit/Compression exit routine with full-function and DEDB
databases.

6 If an exit routine is not required because only logging is being requested,
specify the exit name as * and the default logging parameter is LOG. If you
do specify an exit routine name, the default logging parameter is NOLOG.

7 Used to control the CASCADE options.

SEGM Statement for INDEX Databases

»»—SEGM—NAME=segname 1

,BYTES=max bytes >

(1)

L, PARENT=0

52 IMS/ESA V6 Utilities Ref: System



DBDGEN

A\
A

I—, FREQ=frequency—|

Notes:

1 The PARENT=keyword can be omitted, or PARENT=0 specified for the root
segment type of a database.

SEGM Statement for LOGICAL Databases

(1)

»»—SEGM—NAME=segnamel— ,PARENT=——segname2 >
L]
,DATA (2)
»—,SOURCE=( (segnameJ:, KEY:l—, dbname) , ( )) >«

,DATA J
Lsegname—[, KEY:l—, dbname

Notes:

1 The PARENT=keyword can be omitted, or PARENT=0 can be specified
for the root segment type of a database.

2 Required when defining a concatenated segment type. Allowed only for a
LOGICAL database.

SEGM Statement Parameter Description

For the SEGM statement, you can use the following abbreviations in place of
keywords specified in the macro definitions:

Keyword Abbreviation
POINTER PTR
FIRST F
LAST L
HERE H
KEY K
DATA D
VIRTUAL \%
PHYSICAL P
SEGM
Identifies this statement as a segment definition statement.
NAME=

Specifies the name of the segment type being defined. The specified name is
used by DL/I and application programs in all references to this segment.
Duplicate segment names are not allowed within a DBD generation. The
segnamel operand must be a 1- to 8-character alphanumeric value. Each
character must be in the range of A through Z, or 0 through 9, or be the
character $, #, or @.

Restriction: The first character of the name cannot be numeric.

Chapter 1. Database Description (DBD) Generation 53



DBDGEN

54

PARENT=
Specifies the names of the physical and logical parents of the segment type
being defined, if any.

0 For root segment types, the PARENT= keyword must be omitted or
PARENT=0 specified.

segname2
For dependent segment types, specifies the name of this segment’s
physical parent.

SNGL or DBLE
Specifies the type of physical child pointers to be placed in all occurrences
of the physical parent of the segment type being defined. SNGL/DBLE can
be specified only for segments in HDAM, HIDAM, or DEDB databases and
are ignored if the physical parent specifies hierarchic pointers (PTR=HIER
or HERBWD).

SNGL causes a 4-byte physical child first pointer to be placed in all
occurrences of the physical parent of the segment type being defined.
SNGL is the default.

DBLE causes a 4-byte physical child first pointer and a 4-byte child last
pointer to be placed in all occurrences of the physical parent of the
segment type being defined.

Ipsegname
Specifies the name of the logical parent of the segment type being defined,
if any. This operand is used only during DBDGEN of a physical database,
and it must be specified on SEGM statements that define logical child
segment types.

VIRTUAL or PHYSICAL
Specifies whether or not a symbolic pointer to the logical parent (logical
parent’s concatenated key) is to be stored as a part of the logical child
segment on the storage device used. It is specified for logical child
segments only. If PHYSICAL is specified, the concatenated key of the
logical parent is stored with each logical child segment. If VIRTUAL is
specified, only the intersection data portion of each logical child segment is
stored. VIRTUAL is the default parameter. PHYSICAL must be specified for
a logical child segment whose logical parent is in a HISAM database, or for
a logical child segment that is sequenced on its physical twin chain through
use of any part of the logical parent’'s concatenated key.

dbnamel
Specifies the name of the database in which the logical parent is defined. If
the logical parent is in the same database as the logical child, dbnamel
can be omitted.

BYTES=
Specifies the length of the data portion of a segment type in bytes using
unsigned decimal integers.

If the segment is processed by an edit/compression routine and the data format
is such that compression cannot take place, the exit routine adds control
information that indicates the segment could not be compressed. The addition
of the control information lengthens the segment beyond the maximum length

IMS/ESA V6 Utilities Ref: System



DBDGEN

definition. To allow for this expansion and to allow IMS to validity check the
compression results, you can add an arbitrary value of 10 bytes to the segment
length.

maxbytes and minbytes in fixed-length segments
For fixed-length segments, “maxbytes” specifies the amount of storage used
for the data portion of the segment. The minbytes operand cannot be
specified for a fixed-length segment. This includes a fixed-length
compressed segment. The maximum length specified for a segment type
must not exceed the maximum record length of the storage device used
minus any prefix or record overhead. For VSAM, the maximum record
length is 30713 bytes; for tape, the maximum is 32760 bytes. The minimum
length that can be specified for maxbytes must be large enough to contain
all fields defined for the segment type. If the segment is a logical child
segment type, the length must be sufficient to contain the concatenated key
of the logical parent.

For a MSDB, the maxbytes value specifies the length of the data portion of
a fixed-length segment not to exceed 32000 bytes. The value specified
must be a multiple of 4.

maxbytes and minbytes in variable-length segments
Defines a segment type as variable-length if the minbytes operand is
included. The maxbytes field specifies the maximum length of any
occurrence of this segment type. The maximum and minimum allowable
values for the maxbytes operand are the same values as described for a
fixed-length segment. The maximum value must be the larger of (1) the
largest segment that appears in the user’s application program 1/O area or
(2) the largest segment stored on disk.

The minbytes operand specifies the minimum amount of storage used by a
variable-length segment. The maximum value for minbytes is the value
specified for maxbytes. The minimum value for minbytes must be:

* For a segment type that is not processed by an edit/compression routine
or is processed by an edit/compression routine but the key compression
option has not been specified, minbytes must be large enough to contain
the complete sequence field if a sequence field has been specified for
the segment type.

* For a segment type that is processed by an edit/compression routine that
includes the key compression option or a segment that is not sequenced,
the minimum value is 4.

Because segments in a HSAM or simple HISAM database cannot be
variable-length, the minbytes operand is invalid for these databases.

In a Fast Path DEDB, a segment starts with a 2-byte field, which defines
the length of the segment including the 2-byte length field, followed by user
data specified by a FIELD statement. The value of minbytes can be
specified from a minimum of 4 bytes to a maximum of maxbytes; however,
the minbytes value must be large enough to contain this segment’s
sequence field (that is, minbytes = START - 1 + BYTES of the sequence
field following the SEGM statement). For example, the smallest minbyte
value for a segment with a 20-byte sequence field length and START = 7 is
26. On any given DL/l call, the actual segment length can fall anywhere

Chapter 1. Database Description (DBD) Generation 55



DBDGEN

between a length that includes the sequence field and the value of
maxbytes. The value of maxbytes must not exceed the control interval size

minus 120.
TYPE=
Describes the type of DEDB dependent segment. Must not be specified for root
segments.
SEQ
Specifies that the segment is a sequential dependent segment type. Only
one sequential dependent segment is permitted per DEDB, and, if specified,
it must be the first dependent segment type.
DIR
Specifies that the segment is direct dependent segment type. DIR is the
default.
FREQ=

Is only used for HSAM, HISAM, or INDEX databases. It specifies the estimated
number of times that this segment is likely to occur for each occurrence of its
physical parent. The frequency operand must be an unsigned decimal number
in the range 0.01 to 224-1. If this is a root segment, “frequency” is the estimate
of the maximum number of database records that appear in the database being
defined. The value of the FREQ= operand when applied to dependent
segments is used to determine the logical record length and physical storage
block sizes for each data set group of the database.

The IF0110 ARITHMETIC OVERFLOW or IEV103 MULTIPLICATION
OVERFLOW assembler error message can occur when the DBDGEN utility is
attempting to calculate a recommended logical record length. If this occurs
during a HSAM or HISAM DBD generation, you may wish to determine the
logical record length and physical block size.

POINTER=
Specifies the pointer fields to be reserved in the prefix area of occurrences of
the segment type being defined. These fields are used to relate this segment to
its immediate parent segments and twin segments.

The use of the POINTER= operand is primarily for HDAM and HIDAM
databases. In addition, it can be used for segment types defined in HISAM
databases which participate in logical relationships with segment types in
HDAM or HIDAM databases. If a segment type is being defined in an HSAM
database, the POINTER= operand must be omitted. If the segment type being
defined is in a HISAM database and does not participate in a logical
relationship, the POINTER= operand should be omitted.

The following abbreviations can be used in the pointer keyword options.

56 IMS/ESA V6 Utilities Ref: System



DBDGEN

Pointer Keyword Options and Abbreviations

HIER[H], HIERBWD[HB], TWIN[T], TWINBWD[TB], NOTWIN[NT]
LTWIN[LT], LTWINBWD[LTB], PAIRED
LPARNT[LP]

CTR[C]

Notes:

» Selected keyword options can be specified in any order, and must be separated
by commas.

* A keyword option can be specified only once.

* All keywords are optional.

* One keyword option can be selected from each line of the above table.

* A keyword option or its abbreviation (shown in brackets) can be selected.

The keyword options of the POINTER= operand have the following meanings:

HIER [H]
Reserves a 4-byte hierarchic forward pointer field in the prefix of occurrences of
the segment type being defined.

HIERBWD [HB]
Reserves a 4-byte hierarchic forward pointer field and a 4-byte hierarchic
backward pointer field in the prefix of occurrences of the segment type being
defined. Hierarchic backward pointers provide increased delete performance.

TWIN [T]
Reserves a 4-byte physical twin forward pointer field in the segment prefix
being defined.

Related Reading:For a more detailed explanation of the use of PTR=TWIN in

HIDAM database root segments, refer to IMS/ESA Administration Guide]

TWINBWD [TB]
Reserves a 4-byte physical twin forward pointer field and a 4-byte physical twin
backward pointer field in the segment prefix being defined. The twin backward
pointers provide increased delete performance.

Recommendation: This option is recommended for HIDAM database root
segments.

Related Reading: For more information on pointer fields, refer to ims/EsA

NOTWIN [NT]
Is used to prevent reserving space for a physical twin forward pointer in the
prefix of occurrences of the segment type being defined. NOTWIN can be
specified for a dependent segment type if the physical parent does not have
hierarchic pointers specified, and no more than one occurrence of the
dependent segment type is stored as a physical child of any occurrence of the
physical parent segment type. In addition, NOTWIN can be specified for the
root segment type of a HIDAM database. When NOTWIN is specified for a
dependent segment type and an attempt is made to load or insert a second
occurrence of the dependent segment as a physical child of a given physical

Chapter 1. Database Description (DBD) Generation 57



DBDGEN

parent segment, an LB status code is returned when trying to insert the second
occurrence during initial load, and an |l status code is returned when trying to
insert the second occurrence after initial load. The NOTWIN option can be
specified for HDAM root segments but only when the randomizing module does
not produce synonyms (keys with different values having the same block and
anchor point). Any attempt to load or insert a synonym is rejected with an LB or
Il status code.

LTWIN [LT]
Is used for virtually paired logical relationships only when defining a real logical
child. Reserves a 4-byte logical twin forward pointer field in the prefix of
occurrences of the logical child segment type being defined. This parameter can
only be specified if the segment type being defined is a logical child and is
being defined in an HDAM or HIDAM database. It should be noted that if
PAIRED is specified, the LTWIN parameter is invalid.

LTWINBWD [LTB]
Is used for virtually paired logical relationships only when defining a real logical
child. Reserves a 4-byte logical twin forward pointer field and a 4-byte logical
twin backward field in the prefix of occurrences of the logical child segment type
being defined. This parameter can only be specified if the segment being
defined is a logical child and is being defined in an HDAM or HIDAM database.
It should be noted that if PAIRED is specified, the LTWIN parameter is invalid.

The use of LTWINBWD rather than LTWIN provides increased performance
when deleting logical child segments.

LPARNT [LP]
Reserves a 4-byte logical parent pointer field in the prefix of occurrences of the
segment type being defined. This parameter can only be specified when the
segment type being defined is a logical child and the logical parent is in an
HDAM or HIDAM database. If the logical parent is in a HISAM database, this
parameter must be omitted, and the PARENT= operand for the segment being
defined must specify PHYSICAL.

CTR [C]
Reserves a 4-byte counter field in the prefix of occurrences of the segment type
being defined. A counter is required if a logical parent segment in a HISAM,
HDAM, or HIDAM database has logical child segments which are not connected
to it by logical child pointers. Counters are placed in all segments requiring
them automatically during DBD generation without the user specifying this
parameter. To avoid a later DBD generation, however, the user can anticipate
future requirements for counters and reserve a counter field in the prefix of
occurrences of a segment type by using this parameter.

PAIRED
Indicates that this segment participates in a bidirectional logical relationship.
This parameter is specified for 1) a virtual logical child segment type, or 2) both
physically paired logical child segment types in a bidirectional logical
relationship. If PAIRED is specified, the LTWIN and LTWINBWD parameters are
invalid.

POINTER= Operand Default Values
The default option for the POINTER= operand in any HIDAM or HDAM DBD is:
PTR=(TWIN,LTWIN,LPARNT)
LTWIN

Is a default if the name of a logical parent (Ipsegname) is specified, in the
PARENT= operand of a SEGM statement.

58 IMS/ESA V6 Utilities Ref: System



LPARNT
Is a default if VIRTUAL is selected in the PARENT= operand of a SEGM
statement.

DBDGEN

The default option for the POINTER= operand in an INDEX, HISAM, or HSAM
DBD is no pointer fields.

If the POINTER= operand is explicitly stated on a SEGM statement, the

segment contains the pointers specified and any pointers that are required by
IMS for correct operation. For example, LTWIN and LPARNT pointers are
created as required. The default values are only used when the operand is
omitted entirely. ffable 7 illustrates use of the POINTER= operand parameters
for various types of DBD generations.

Table 7. Use of POINTER= Operand Parameters (No Logical Relationship)

Segment Definition

Physical Segments Contained in Database Type

Purpose Keyword Logical HSAM SHSAM HISAM HDAM HIDAM INDEX

Parameter Segments GSAM SHISAM

MSDB DEDB

Pointer to next segment HIER INVALID VALID IGN VALID VALID IGN
in hierarchy
Pointer to next and HIERBWD INVALID INVALID IGN VALID VALID IGN
previous segments in
hierarchy
Pointer to next TWIN INVALID INVALID IGN VALID VALID IGN
occurrence of physical
twins
Pointer to next and TWINBWD INVALID INVALID IGN VALID VALID IGN
previous occurrence of
physical twins
Counter field in prefix CTR INVALID INVALID VALID VALID VALID IGN
Pointer to next LTWIN INVALID INVALID IGN VALID* VALID* IGN
occurrence of logical twin
Pointer to next and LTWINBWD INVALID INVALID IGN VALID* VALID* IGN
previous occurrence of
logical twins
Pointer to logical parent LPARNT INVALID INVALID VALID? VALID® VALID® IGN
segment
Logical relationship PAIRED INVALID INVALID VALID* VALID® VALID® IGN

between HS-HS or
HS-HD or HD-HD

Key:

INVALID—This parameter cannot be specified.

IGN—This parameter can be specified but it is ignored.

VALID—This parameter is valid and used as indicated in the following notes.

Notes:

1. Used when a logical child segment being defined participates in a logical relationship. This should be specified if the segment exists within HDAM or

HIDAM and the logical parent relates to the logical child with direct addresses (logical child pointers).

2. Can be used when a logical child segment is being defined in a HISAM database and the logical parent is defined in an HDAM or HIDAM database.

3. Can be used when a logical child segment is being defined in an HDAM or HIDAM database and the logical parent is in an HDAM or HIDAM

database.

4. Can be used when a logical child segment is being defined in a HISAM database and the logical parent is defined in a HISAM, HDAM, or HIDAM
database, and the logical relationship is bidirectional.

5. Used when a bidirectional logical relationship is being defined with two logical child segments, both physically present or on the SEGM statement for

a virtual logical child.

RULES=

Specifies the rules used for insertion, deletion, and replacement of occurrences
of the segment type being defined.

Chapter 1. Database Description (DBD) Generation

59



DBDGEN

Related Reading: For a description of the various uses of this keyword, refer to
MS/ES i o0 Guide: I ]

B or PP or LLL or VVV
Specifies the path type that must be used to insert, delete, or replace a
segment: P specifies physical, L specifies logical, V specifies virtual, and B
specifies bidirectional virtual.

The first column applies to segment insertion, the second column applies to
segment deletion, and the third column applies to segment replacement.
Each of the three columns can contain the same or different characters.
These parameters are specified for logical child segments and for their
physical and logical parent segments. They should be omitted for all
segment types which do not participate in logical relationships.

FIRST or LAST or HERE
Specifies where new occurrences of the segment type defined by this
SEGM statement are inserted into their physical database (establishes the
physical twin sequence). This value is used only when processing segments
with no sequence field or with a nonunique sequence field. The value is
ignored when specified for a segment type with a unique sequence field
defined.

Except for HDAM roots, the rules of FIRST, LAST, or HERE do not apply to
the initial loading of a database and segments are loaded in the sequence
presented in load mode. If a unique sequence field is not defined for the
HDAM root on initial load or HD reload, the insert rules of FIRST, LAST, or
HERE determine the sequence in which roots are chained. Thus the reload
of an HDAM database reverses the order of the unsequenced roots when
HERE or FIRST is used.

When processing HDAM roots without a unique sequence field, in update
mode, the sample randomizing modules provided with IMS (DFSHDC10
through DFSHDCA40) uses the segment I/O area data in order to calculate a
block/rap for an insert call.

Related Reading: For more information on HDAM Randomizing Routines,

refer to IMS/ESA Customization Guide.

The rules of FIRST, LAST, or HERE are only valid for update mode after a
database has been loaded, except for the HDAM exceptions noted above.
LAST is the default except for DEDB segments.

For Fast Path sequential dependent segment processing, the insert rule of
FIRST is always used and cannot be overridden. For direct dependent
segment processing, you can specify FIRST, LAST, or HERE. HERE is the
default.

FIRST
For segments without a sequence field defined, a new occurrence is
inserted before all existing physical twins. For segments with a
nonunique sequence field defined, a new occurrence is inserted before
all existing physical twins with the same sequence field value.

LAST
For segments without a sequence field defined, a new occurrence is
inserted after all existing physical twins. For segments with a nonunique

60 IMS/ESA V6 Utilities Ref: System



DBDGEN

sequence field defined, a new occurrence is inserted after all existing
physical twins with the same sequence field value.

HERE
For segments without a sequence field, a new occurrence is inserted
immediately before the physical twin on which position was established.
If a position was not established on a physical twin of the segment
being inserted, the new occurrence is inserted before all existing
physical twins. For segments with a nonunique sequence field defined,
a new occurrence is inserted immediately before the physical twin with
the same sequence field value on which position was established. If a
position was not established on a physical twin with the same sequence
field value, the new occurrence is inserted before all physical twins with
the same sequence field value. The insert position is dependent on the
position established by the previous DL/I call.

A command code of L (last) takes precedence over the insert rule
specified causing a new occurrence to be inserted according to the
insert rule of LAST, for insert calls issued against a physical path.

SOURCE=
Is used for two purposes:

» To identify the real logical child segment type that is to be represented by the
virtual logical child segment type that is being defined

» To identify the segment type or types in physical databases that are
represented by the segment type being defined in a logical database

When defining a virtual logical child the statement is:

,DATA,
»—SOURCE=( (segnameJ_——I—dbname) ) ><

seghame
Specifies the name of the real, logical child

DATA
Indicates that both the key and the data portions of segname are to be
used in constructing the segment. This parameter is required.

dbname
Specifies the name of the physical database that contains the real logical
child.

When defining a segment type in a logical database the statement is:

»>—SOURCE= >

DATA DATA
»—(— (—segname—,—EKEY:I—, dbname—)—,—(—segname—,—EKEY:I—,—dbname—)—)—><

(segname, KEY|DATA,dbname)
The first occurrence refers to the segment in a physical database that is
being defined as a logical segment, or it refers to the logical child segment
type in a physical database that is used for the first portion of a
concatenated segment type in this logical database.

Chapter 1. Database Description (DBD) Generation 61



DBDGEN

segname

Is the name of the segment type in the physical database.

KEY

Specifies that the key portion of the segment specified in segname is to be
placed in the key feedback area. The segment must not be placed in the
user 1/O area when a call is issued to process the logical segment type that
represents segname.

DATA

Specifies that the key portion of the segment specified in segname must be
placed in the key feedback area, and the segment must be placed in the
user I/O area when a call is issued to process the logical segment type that
represents segname.

dbname

Specifies the name of the physical database that contains segname. The
second occurrence of (segname, KEY|DATA, dbname) refers to the logical
or physical parent segment type in a physical database that is used for the
destination parent part of a concatenated segment in this logical database.
The description of each operand for the second occurrence is the same as
described for the first occurrence.

When the first occurrence of (segname, KEY/DATA, dbname) refers to a
virtual logical child, the second occurrence, if specified, must refer to the
real logical child’s physical parent.

When the source segments is used to represent a concatenated segment,
the KEY and DATA parameters are used to control which of the two
segments (or both) are placed in the user’s I/O area on retrieval calls. If
DATA is specified, the segment is placed in the user’s I/O area. If KEY is
specified, the segment is not placed in the user’s I/O area, but the
sequence field key, if one exists, is placed in the key feedback area of the
PCB. The key of a concatenated segment is the key of the logical child,
either the physical twin sequence field or the logical twin sequence field,
depending on which path the logical child is accessed from. The KEY and
DATA parameters apply to retrieval type calls only.

On insert calls, the user’s 1/0 area must always contain the logical child
segment and, unless the insert rule is physical, the logical parent segment.
Even if KEY is specified for a segment, the database containing that
segment must be available to IMS when calls are issued against the logical
database containing the referenced segment. When the first occurrence of
the SOURCE= segment specification references a logical child, the second
occurrence referencing the destination parent for the concatenated segment
should also be specified. If not explicitly specified it is included with the
KEY parameter by default when the blocks are built.

The segments defined with a logical DBD generation must gain their
physical definition from segments previously defined in one or more
physical DBD generations.

If the SEGM statement defines a segment in an INDEX data set, the
SOURCE-= operand is invalid.

SSPTR=
Specifies the number of subset pointers. You can specify from 0 to 8. When you
specify 0 or if SSPTR is not specified, you are not using a subset pointer.

62 IMS/ESA V6 Utilities Ref: System



DBDGEN

EXIT=
Specifies that the Data Capture exit routine is used. You can specify multiple
exit routine names on a single SEGM statement. You can select different data
options for each exit routine. The order you list the exit routines within the
parameter determines the order the exit routines are called.

When specified on the SEGM statement, the EXIT= parameter can either
override the specification on the DBD or limit the parameter to specific
segments. The EXIT= parameter applies only to the particular segments within
the physical database specified. However, when applied to logical children
segments, the exit routine must be specified on the real logical child, not the
virtual logical child. The following physical databases are supported by this exit
routine:

HDAM

HIDAM

HISAM

SHISAM

DEDB

If the exit routine is not specified for a supported database organization or a
supported segment type, DBDGEN fails.

Related Reading:For more detailed information about this exit routine, refer to

The EXIT= parameter can also be specified on the DBD statement.

exit_name
Specifies the name of the exit routine that processes the data. This operand
is required. The name must follow standard naming conventions. A
maximum of 8 alphanumeric characters is allowed. You can specify an
asterisk (*) instead of an exit routine name to indicate that you want logging
only. If this is done, the logging parameter default is LOG. If you do specify
an exit routine, the logging parameter is NOLOG.

The following operands are optional.

NONE
Nullifies an exit routine specified on the DBD statement. It must be
specified on the SEGM statement to indicate the DBD exit name does not
apply to that specific segment.

EXIT=NONE explicitly nullifies the exit specified on the DBD for virtual
logical children.

KEY
Specifies the exit routine is passed the physical concatenated key. This key
identifies the physical segment updated by the application.

KEY is the default.

NOKEY
Specifies the physical concatenated key is not required for the exit routine.

NOKEY is optional.

Chapter 1. Database Description (DBD) Generation 63



DBDGEN

DATA

Passes physical segment data to the Data Capture exit routine for updating.
When DATA is specified and a Segment Edit/Compression exit routine is
also being used, the data passed is expanded data.

DATA is the default.

NODATA

Can be specified when the exit routine does not require segment data. Use
NODATA to avoid the overhead created from saving physical segment data.

NODATA is optional.

NOPATH

Indicates the exit routine does not require data from segments in the
physical root’s hierarchical path. NOPATH is an efficient way to avoid the
processing time needed to retrieve path data.

NOPATH is the default.

PATH

Can be specified when the data from each segment in the physical root’s
hierarchic path must be passed to the exit routine for an updated segment.
Use PATH to allow an application to separately access several segments
for insertion, replacement, or deletion.

You can use the PATH option when information from segments in the path
is needed to compose the DB2 primary key. The DB2 primary key would
then be used in a propagation request for a dependent segment update.
Typically, you need this kind of segment information when the parent
contains the key information and the dependent contains additional data
that would not fit in the parent segment.

You can also use PATH when additional processing is necessary. It could
be that you are not accessing several segments with one call; for example,
you did not invoke the D command code. In this case, additional processing
is necessary if the application is to access each segment with a separate
call.

PATH is optional.

CASCADE

Indicates the exit routine is called when DL/I deletes this segment because
the application deleted a parent segment. Using CASCADE ensures that
data is captured for the defined segment.

Related Reading:For a detailed discussion of delete rules for the Data

CaEture exit routine, refer to i

CASCADE is the default.

The CASCADE operand has three suboptions. These suboptions control
the way data is passed to the exit routine. If you specify suboptions, you
must enclose the CASCADE operand and the suboptions within
parentheses.

64 IMS/ESA V6 Utilities Ref: System



DBDGEN

KEY
Passes the physical concatenated key to the exit routine. This key
identifies the segment being deleted by a cascade delete.

KEY is the default.

NOKEY
Can be used when the exit routine does not require the physical
concatenated key of the segment being deleted.

NOKEY is optional.

DATA
Passes segment data to the exit routine for a cascade delete. DATA
also identifies the segment being deleted when the physical
concatenated key is unable to do so.

DATA is the default.

NODATA
Can be specified when the exit routine does not require segment data.
NODATA reduces the significant storage and performance requirements
that result from saving physical segment data.

NODATA is optional.

NOPATH
Indicates the exit routine does not require segment data in the physical
root’s hierarchical path. Use NOPATH to eliminate the substantial
amount of path data needed for a cascade delete.

NOPATH is the default.

PATH
Can be specified to allow an application to separately access several
segments for a cascade delete.

PATH is optional.

NOCASCADE

LOG

Indicates the exit routine is not called when DL/I deletes this segment.
Cascade delete is not necessary when a segment without dependents is
deleted.

NOCASCADE is optional.

Requests that the data capture control blocks and data be written to the IMS
system log.

NOLOG
Indicates that no data capture control blocks or data is written to the IMS
system log.

COMPRTN=
Selects a Segment Edit/Compression exit routine for either DEDB or
full-function database.

For segment edit/compression of full-function database

Chapter 1. Database Description (DBD) Generation 65



DBDGEN

Do not specify this keyword if the SOURCE keyword is used. The DL/I
COMPRTN keyword is invalid during DBDGEN for MSDB, HSAM, simple
HSAM, simple HISAM, INDEX, and logical databases. It is also invalid for
logical child segments in any database. When used for a HISAM database, it
must not change the sequence field offset for HISAM root segments. In
addition, the minimum segment length that can be specified for a segment type
where the segment edit/compression option is specified is 4 bytes.

routinename
Specifies the name of the user-supplied edit/compression exit routine. This
name must be a 1- to 8-character alphanumeric value and must not be the
same as any other name in IMS.RESLIB.

DATA
Specifies that the indicated exit routine condenses or modifies data fields
only. Sequence fields must not be modified, nor data fields that change the
position of the sequence field in respect to the start of the segment. DATA
is the default value if a compression routine is named but no operand is
selected.

KEY
Specifies that the exit routine can condense or modify any and all fields
within the named segment. This parameter is invalid for the root segment of
a HISAM database.

Restriction: The KEY operand is not supported for DEDB. If you specify
the KEY operand, an error message is issued and DBDGEN is terminated.

INIT
Indicates that initialization and termination processing control is required by
the segment exit routine. When this parameter is specified, the
edit/compression routine gains control after database open and after
database close.

MAX
Specifies the maximum number of bytes by which fixed length segments
can increase during compression exits. You can specify from 1 to 32,767
bytes.

For segment edit/compression of DEDB

routinename
Specifies the MVS load module name of the user-supplied segment
edit/compression exit routine.

Requirement: The routine name is required.

DATA
Specifies that only the user data part of the segment is compressed. DATA
is the default.

INIT
Allows the segment compression exit routine to gain control immediately
after the first area in the database is opened and returns control
immediately before the last area in the database is closed. As long as the
segment length is within the values specified by DBDGEN, no errors occur
while checking the field qualification for segment compression or expansion.

66 IMS/ESA V6 Utilities Ref: System



DBDGEN

LCHILD Statement

The LCHILD statement defines the following:

* Alogical relationship between two segment types in a HISAM, HIDAM, or HDAM
database or a logical relationship between a segment type in any two of these
databases

* A primary HIDAM index or secondary index relationship between two segment
types

Logical Relationships

Following any SEGM statement that defines a logical parent segment type in a
DBDGEN input deck, there must be one LCHILD statement for each segment type
that is a logical child of that logical parent, except for virtual logical child segment
types. These LCHILD statements establish the relationships between the logical
parent and its logical child segment types. The SOURCE= operand of a SEGM
statement that defines a virtual logical child segment type establishes the same
relationship between a logical parent and a virtual logical child segment type.

Primary HIDAM Index Relationship
Two LCHILD statements are used to establish the index relationship required

between the primary HIDAM index database and the root segment type of a HIDAM
database.

Following the SEGM statement that defines the root segment type in a HIDAM
database DBD generation, there must be an LCHILD statement that hames the
index pointer segment type in an index database. Following the SEGM statement
that defines the index pointer segment type in a primary HIDAM index database
DBD generation there must be an LCHILD statement that names the root segment
type in a HIDAM database.

Secondary Index Relationships
Two LCHILD statements are used to establish each secondary index relationship.

Following a SEGM statement that defines an index target segment type, there must
be one LCHILD statement for each index pointer segment type that points to that
index target segment type. Each LCHILD statement following the SEGM for an
index target segment type identifies the index pointer segment type that points to
the index target.

Following a SEGM statement that defines an index pointer segment type in a
secondary index database, there must be an LCHILD statement that identifies its
index target segment type.

A maximum of 255 LCHILD statements can occur in a single DBD generation. An
LCHILD statement can follow only a SEGM statement, FIELD statement, XDFLD
statement, or another LCHILD statement. Because logical relationships and index
relationships must not be defined in an HSAM database, LCHILD statements are
invalid when ACCESS=HSAM.

The format of the LCHILD statement for each database type is shown in the
following examples. The parameters are explained in ELCHILD Statement

LCHILD Statement for HISAM Databases

Chapter 1. Database Description (DBD) Generation 67



DBDGEN

(1)

»»—| CHILD—NAME=(segnamel ,dbname) | >
I—I:, POINTER=

,PTR=J (2)
DBLE:

(2)
NONE

(3)
SYMB

»-

L (2) L , LAST (2)
,PAIR=segname2 . RULES=~|E, FIRSH*
,HERE

Notes:
1 Logical relationships are secondary indexing.
2 Used for HDAM, HISAM, and HIDAM logical relationships.

3 If symbolic pointing is specified for the index target segment type when
defining its physical database, specify symbolic pointing in the secondary

index for that segment type. If SYMB is specified for the target segment of a
secondary index, the PTR=SYMB is specified on the LCHILD statement of the

INDEX DBD also.

LCHILD Statement for HDAM Databases

v

(1)
»»—| CHILD—NAME=(segnamel ,dbname)

POINTER=
,PTR=J (2)
L DBLE
(2)
- NONE
(3)
L INDX
(4)
LSYmMB

»
»

v
A

L (2) L ,LAST (2)
,PAIR=segname?2 s RULES=~|E, FIRSH*
,HERE

Notes:

1 Logical relationships are secondary indexing.

2 Used for HDAM, HISAM, and HIDAM logical relationships.

3 Required during a HIDAM DBD generation on the LCHILD statement that

establishes the primary HIDAM index relationship. If PTR=INDX is specified

for the target segment of a secondary index, PTR must be omitted or
specified as PTR=SNGL on the LCHILD statement of the INDEX DBD.

4 If symbolic pointing is specified for the index target segment type when
defining its physical database, specify symbolic pointing in the secondary

68 IMS/ESA V6 Utilities Ref: System



DBDGEN

index for that segment type. If SYMB is specified for the target segment of a
secondary index, the PTR=SYMB is specified on the LCHILD statement of the

INDEX DBD also.

LCHILD Statement for HIDAM Databases
(1) (5) (3)

»>—| CHILD—NAME=(segnamel ,dbname) INDX >
|:,P01NTER=— (2)
,PTR=—- DBLE
(2)
NONE
(4)
SYMB

[

L (2) L ,LAST (2)
,PAIR=segname2 ,RULES=~|E,FIR357
,HERE

Notes:
1 Logical relationships are secondary indexing.
2 Used for HDAM, HISAM, and HIDAM logical relationships.

3 Required during a HIDAM DBD generation on the LCHILD statement that
establishes the primary HIDAM index relationship. If PTR=INDX is specified

5

for the target segment of a secondary index, PTR must be omitted or
specified as PTR=SNGL on the LCHILD statement of the INDEX DBD.

If symbolic pointing is specified for the index target segment type when

defining its physical database, specify symbolic pointing in the secondary

index for that segment type. If SYMB is specified for the target segment of a
secondary index, the PTR=SYMB is specified on the LCHILD statement of the

INDEX DBD also.
Required for primary index of HIDAM database.

LCHILD Statement for INDEX Databases

(1)
»»—| CHILD—NAME=(segnamel ,dbname)

»—, INDEX=f1dname

POINTER=
,PTR=J (2)

SNGL

(3)

SYMB

Notes:

1
2
3

Logical relationships are secondary indexing.
Required for primary index of HIDAM database.

If symbolic pointing is specified for the index target segment type when

Chapter 1. Database Description (DBD) Generation

69



DBDGEN

defining its physical database, specify symbolic pointing in the secondary
index for that segment type. If SYMB is specified for the target segment of a
secondary index, the PTR=SYMB is specified on the LCHILD statement of the
INDEX DBD also.

LCHILD Statement Parameter Description

The following abbreviations can be used in place of keywords specified in the
above macro definition:

Keyword Abbreviation
POINTER PTR

FIRST F

LAST L

HERE H

NAME=

The segnamel operand specifies the name of the logical child, index pointer,
index target or HIDAM root segment type that is to be associated with the
segment type defined by the preceding SEGM statement in the DBD generation
input deck. The dbname operand is the name of the database that contains the
segment type specified in segnamel. dbname can be omitted when segnamel
is defined in this DBD generation. Both segnamel and dbname must be 1- to
8-character alphanumeric values.

POINTER=
Specifies the pointers used in logical or index relationships. When the
POINTER= keyword is omitted from any index DBD generation,
POINTER=SNGL is the default. You must specify POINTER=INDX or SYMB for
any LCHILD statement following an index target segment type; no default is
provided for this part of the index relationship. When the POINTER= keyword is
omitted from an LCHILD statement which establishes a unidirectional or
physically paired bidirectional logical relationship, POINTER=NONE is the
default. When the POINTER= keyword is omitted or specified as NONE for an
LCHILD statement which establishes a virtually paired bidirectional logical
relationship, POINTER=SNGL is the default.

SNGL Is used for logical relationships, or index relationships implemented with
direct address pointers. SNGL specifies that a logical child first pointer
field is to be reserved in each occurrence of the segment type defined
by the preceding SEGM statement in the DBDGEN input deck. When
the preceding SEGM defines a logical parent, the pointer field contains
a direct address pointer to the first occurrence of a logical child
segment type. When the preceding SEGM defines the primary HIDAM
index database segment type, the pointer field contains a direct address
pointer to a HIDAM database root segment. When the preceding SEGM
defines an index pointer segment type in a secondary index database,
the pointer field contains a direct address pointer to an index target
segment.

DBLE Is used to specify two 4-byte pointer fields, logical child first and logical
child last, reserved in the logical parent segment. The two pointers point
to the first and last occurrences of logical child segment type under a
logical parent. The logical child last pointer is of value when the logical
child is not sequenced and the RULES= operand is LAST.

NONE Should be used when the logical relationship from the logical parent to

70 IMS/ESA V6 Utilities Ref: System



DBDGEN

the logical child segment is not implemented or not implemented with
direct address logical child pointers. In this case, the relationship from
logical parent to logical child does not exist or is maintained by using
physically paired segments. No pointer fields are reserved in the logical
parent segment.

INDX Is specified on the LCHILD statement in a HIDAM database used to
establish the index relationship between the HIDAM root segment type
and the primary HIDAM index during a HIDAM database DBD
generation. INDX can also be specified on the LCHILD statement in the
DBD for the target database that establishes the index relationship
between an index target segment type and a secondary index. In these
cases, omit the PTR= operand or specify PTR=SNGL on the LCHILD
statement of the primary or secondary index DBD. An LCHILD
statement for a HIDAM primary index must precede the LCHILD
statements for secondary indexes.

SYMB Can be used in the DBD generation for the target database of a
secondary index to specify that the concatenated keys of the index
target segments are to be placed in the index pointer segments in lieu
of a direct pointer. You must specify SYMB when the index target
segment type is in a HISAM database. SYMB is optional when the
index target segment type is in an HDAM or HIDAM database.

An additional use of the SYMB operand in the INDEX DBDGEN is to
prevent reserving space in the prefix of index pointer segments for the
4-byte direct address index target segment pointer that is not used
when the index pointer is symbolic.

PAIR=
Is specified segname?2 for bidirectional logical relationships only. The segname?2
operand is the name of the logical child segment that is, physically or virtually,
paired with the logical child segment specified in segnamel. The segname2
operand must be a 1- to 8-character alphanumeric value.

INDEX=
Is specified on LCHILD statements for an Index DBD generation only. The
fldname operand specifies the name of the sequence field of a HIDAM root
segment type during DBD generation of the primary index for a HIDAM
database, or the name of an indexed field, defined through an XDFLD
statement in an index target segment type during DBD generation of a
secondary index database.

RULES=
Is used for logical relationships when no sequence field or a nonunique
sequence field has been defined for a virtual logical child. Under these
conditions, the rule of FIRST, LAST, or HERE controls the sequence in which
occurrences of the real logical child in the logical relationship are sequenced
from the logical parent through logical child and logical twin pointers (this
establishes the logical twin sequence).

FIRST Indicates that, if no sequence field is specified for the logical child, a
new occurrence is inserted before the first existing occurrence of the
logical child. If a nonunique sequence field is specified for the logical
child, a new occurrence is inserted before all existing occurrences with
the same key.

LAST Indicates that, if no sequence field is specified for the logical child, a
new occurrence is inserted after the last existing occurrence of the
logical child. If a nonunigue sequence field is specified for the logical

Chapter 1. Database Description (DBD) Generation 71



DBDGEN

child, a new occurrence is inserted after all existing occurrences with
the same keys. LAST is the default option.

HERE Indicates that the insert is dependent on the position established by the
previous DL/I call. If no sequence field is defined, the segment is
inserted before the logical twin that position was established on through
the previous call. If no position was established by a previous call, the
new twin is inserted before all existing logical twins. If a nonunique
sequence field is defined, the segment is inserted before the logical
twin with the same sequence field value on which position was
established by a previous call. If no position was established on a
logical twin with the same sequence field value, the segment is inserted
before all twins with the same sequence field value.

When a new occurrence of a logical child is inserted from its physical
parent, no previous position exists for the logical child on its logical twin
chain. Therefore, the new occurrence is placed before all existing
occurrences on the logical twin chain when no sequence field has been
defined, or before all existing occurrences with the same sequence field
value when a nonunique sequence field has been defined.

A command code of L (last) takes precedence over the insert rule specified,
causing a new occurrence to be inserted according to the insert rule of LAST,
for insert calls issued against a logical path.

FIELD Statement

The FIELD statement defines a field within a segment type. Fields are referred to
by PSBs when defining sensitivity to the fields or by an application program in a
DL/I call segment search argument. A maximum of 1000 fields can be defined for all
segments in a DBD generation, and a maximum of 255 fields can be defined for
any segment type. A unique sequence field must be defined for the root segment
types of HISAM, HIDAM, primary HIDAM INDEX, SHISAM, DEDB, and
non-terminal-related MSDB databases. Root segment types in an HDAM database
do not need a key field defined; if a key field is defined, it does not have to be
unique.

FIELD statements are used in DBD generation:
» To define fields of a segment type as that segment type is seen when it is
accessed from its physical parent segment.

» To define the fields of a real logical child segment type in a virtually paired logical
relationship as seen when that segment type is accessed from its logical parent.
The FIELD statements must immediately follow the SEGM statement defining the
virtual logical child.

» To define system-related fields that are used for secondary indexing.

The format of the FIELD statement is for each database type is shown in the

following examples. The parameters are explained in EEIELD Statement Parameter

FIELD Statement for HSAM Databases

»»—FIELD—NAME=(fldnamel L )—,BYTES=bytes—,START=startpos—

U
sEQ—l 1|

72 IMS/ESA V6 Utilities Ref: System



DBDGEN

A\
A

| c
,TYPE=~EX3—
P

FIELD Statement for HISAM Databases

»»—FTELD—NAME= (—fldnamel

) ,BYTES=bytes———»

LSEQL;;D_
(1)

systrelfldname

»—,START=startpos »><

L c— (2)
,TYPE=~EX
p—!

Notes:
1 A system related field used for secondary indexing.

2 The TYPE=parameter is ignored for fields with a systrelfldname.
FIELD Statement for HDAM Databases

»»—FIELD—NAME= (—fldnamel ) ,BYTES=bytes———>

,U
L’SEQJ:’MZI_
(1)

systrel fldname

A\
A

»—,START=startpos

L ct— (2)
,TYPE=~EX
p—

Notes:
1  Asystem related field used for secondary indexing.

2 The TYPE=parameter is ignored for fields with a systrelfldname.
FIELD Statement for HIDAM Databases

»»—FIELD—NAME= (—fldnamel ) ,BYTES=bytes——»

LSEQL;EJ_
(1)

systrelfldname

Chapter 1. Database Description (DBD) Generation 73



DBDGEN

v
A

»—,START=startpos

L — @
,TYPE:{X

Notes:
1 A system related field used for secondary indexing.

2 The TYPE=parameter is ignored for fields with a systrelfldname.

FIELD Statement for MSDB Databases

»»—FIELD—NAME=(fldnamel ,BYTES=bytes >
l—,SEQ—,U—)J
»—,START=startpos >«
[
,TYPE=——X
P__
H__
F—

FIELD Statement for DEDB Databases

»»—FIELD—NAME=(fldnamel |_ )—,BYTES=bytes—,START=startpos——»
»SEQ—, U

v
A

| c
,TYPE=~EX37
P

FIELD Statement for Index Databases

»>—FTELD—NAME=(fldnamel

,BYTES=bytes—,START=startpos——»

LSEQL;;j_)J

L. _£f
,TYPE= X
p—

FIELD Statement Parameter Description

NAME=fldnamel
Specifies the name of the field being defined within a segment type. The name
specified can be referred to by an application program in a DL/I call SSA.

74 IMS/ESA V6 Utilities Ref: System



DBDGEN

Duplicate field names must not be defined for the same segment type.
fldnamel must be a 1- to 8-character alphanumeric value.

SEQ
Identifies this field as a sequence field in the segment type. FIELD statements
containing the keyword SEQ must be the first FIELD statements following a
SEGM statement in a DBD generation input deck. If the sequence field of a real
logical child segment consists of any part of the logical parent’s concatenated
key, you must specify the PHYSICAL parameter in the SEGM statement in
order for the logical child to include the concatenated key of the logical parent
with the logical child in storage.

As a general rule, a segment can have only one sequence field. However, in
the case of virtually paired bidirectional logical relationships, multiple FIELD
statements can be used to define a logical sequence field for the virtual logical
child segment type, as described below.

A sequence field must be specified for a virtual logical child segment type if,
when accessing a logical child segment from its logical parent, one requires real
logical child segments to be retrieved in an order determined by data in a field
or fields of the real logical child segments. This sequence field can include any
part of the segment as it appears when viewed from the logical parent (that is,
the concatenated key of the real logical child’s physical parent followed by any
intersection data). Since it might be necessary to describe the sequence field of
a logical child segment as accessed from its logical parent segment in
noncontiguous pieces, multiple FIELD statements with the SEQ parameter
present are permitted. Each statement must contain a unique fldnamel
parameter.

You can define any sequence field as a qualification in an SSA, but all
succeeding sequence fields are considered as a part of the named

field. Therefore, the length of the field named in the SSA is the concatenated
length of the specified field plus all succeeding sequence fields.This“scattered”
sequence field is permitted only when specifying the sequence field for a virtual
logical child segment. If the first sequence field is not included in a “scattered”
sequence field in an SSA, DL/I treats the argument as a data field specification
rather than a sequence field specification. DL/l must examine all segment
instances on a twin chain when a data field specification is evaluated. When a
sequence field specification is evaluated the search continues along the twin
chain until a sequence field value that is higher than the SSA value is reached.
The search stops at that point.

In a MSDB, the keyword SEQ must be specified if the DATASET statement
specifies REL=NO (a non-terminal-related MSDB without terminal-related keys);
otherwise this keyword is invalid.

In a DEDB, SEQ must be used in the root segment and can be specified in any
direct dependent segment.

Restriction:SEQ cannot be specified for the sequential dependent segment.

UorM
Qualifies the type of sequence (SEQ) field being specified. The parameter U
indicates that only unique values are allowed in the sequence field of
occurrences of the segment type. For a dependent segment type, the sequence
field of each occurrence under a given physical parent segment must contain a
unique value. The parameter M indicates that duplicate values are allowed in

Chapter 1. Database Description (DBD) Generation 75



DBDGEN

the sequence field of occurrences of the segment type. For a root segment
type, the sequence field of each occurrence must contain a unique value,
except in HDAM. The root segment type in an HDAM database does not need
a key field; if a key field is defined, it does not have to be unique.

When no sequence field or a nonunique sequence field is defined for a
segment, occurrences of the segment are inserted according to the rule of
FIRST, LAST, or HERE as specified on the SEGM or LCHILD statement for that
segment.

Recommendation:It is highly recommended that all segments which participate
in a logical relationship have unigue sequence fields. This includes physical and
logical parents as well as physical and logical child segments. Multiple
sequence fields for a virtual logical child segment type must be uniformly
defined as either unique or nonunique.

In a non-terminal-related MSDB without terminal-related keys, unique (U) values
must be specified for the root sequence field. In a DEDB, unique (U) values
must be specified for the sequence field of the root segment. A dependent
segment in a DEDB does not require a key. However, if a key is defined, it must
be unique.

systrelfldname

Defines a system related field which can only be used for secondary indexing.
There are two types of system-related fields:

» All of or a portion of the concatenated key of an index source segment type
defined by the preceding SEGM statement. The name for this type of
system-related field can be up to 8 characters long, and must begin with the
three characters /CK. The fourth through eighth characters permit unique
identification of the field being defined, whose name must be unique among
all other fields defined in the segment type. This type of system-related field
is defined to enable the use of the concatenated key of an index source
segment, or portions of the concatenated key in the subsequence or
duplicate data fields of index pointer segments.

Example: Assume the following concatenated key:

Root key | Dependent key | Dependent key| Dependent key

(10bytes) | (3 bytes) (3 bytes) (3 bytes)

If three system-related fields were to consist of bytes 2 through 8 of the root
key, byte 1 of the second key and bytes 5 and 6 of the fourth key, the FIELD
statements specifying these fields could be as follows:

NAME=/CK1

BYTES=7
START=2

NAME=/CK2
BYTES=1
START=11

NAME=/CK3
BYTES=2
START=25

You can then specify the three system-related fields defined for use in the
subsequence or duplicate data fields of index pointer segments by including

76  IMS/ESA V6 Utilities Ref: System



DBDGEN

the names of the system related fields in lists for the subsequence or
duplicate data fields on an XDFLD statement.

* The second type of system-related field is defined within an index source
segment type to ensure uniqueness of sequence field keys in a secondary
index. The name specified for this type of system-related field must begin
with the characters /SX, and the name specified can be up to 8 characters in
length. When this type of system-related field is defined in an index source
segment type, IMS generates a unique 4-byte value, and places it in the
subsequence field of the index pointer segment generated from an index
source segment.

On an XDFLD statement, a /CK field can be included in the list of fields
specified for either the subsequence or DDATA fields or both of an index pointer
segment. A /SX field can only be included in the list of fields specified for the
subsequence field of index pointer segments.

BYTES=
Specifies the length of the field being defined in bytes. For fields other than
system-related fields, BYTES must be a valid self-defining term whose value
does not exceed 255. If a concatenated key or a portion of a concatenated key
of an index source segment type is defined as a system-related field, the value
specified can be greater than 255, but must not exceed the length of the
concatenated key of the index source segment. The length of a /SX
system-related field is always 4 bytes; therefore, when specified, the BYTES
operand is disregarded. For the sequence field of a MSDB segment, BYTES
must not exceed 240. For the sequence field of a DEDB segment, BYTES must
not exceed the value of minbytes specified for the segment.

START=
Specifies the starting position (startpos) of the field being defined in terms of
bytes relative to the beginning of the segment. Startpos must be a numeric term
whose value does not exceed 32767. Startpos for the first byte of a segment is
one. For variable-length segments, the first 2 bytes contain the length of the
segment. Therefore the first actual user data field starts in byte 3. Overlapping
fields are permitted. When a SEGM statement defines a logical child segment,
the first n bytes of the segment type is the logical or physical parent’s
concatenated key. A field starting in position one would define all or a portion of
this field. A field starting in position n+1 would start with intersection data.

START= can be used for a system-related field, to describe a portion of the
concatenated key as a field in an index source segment type. If used in this
way, START= specifies the starting position of the relevant portion of the
concatenated key relative to the beginning of the concatenated key. The first
byte of the concatenated key is considered to have a position of one. It must be
a numeric term whose value does not exceed the length of the concatenated
key plus one. Subtract the value specified in the BYTES operand. The startpos
operand for the /SX system-related field is disregarded.

TYPE=
Specifies the type of data that is to be contained in this field. The value of the
parameter specified for this operand indicates that one of the following types of
data is contained in this field:

X Hexadecimal data
P Packed decimal data
C Alphanumeric data or a combination of types of data

Chapter 1. Database Description (DBD) Generation 77



DBDGEN

78

F
H

Binary fullword data
Binary halfword data

Parameters F and H are valid only for MSDB databases.

All DL/I calls perform field comparisons on a byte-by-byte binary basis. No
check is made by IMS to ensure that the data contained within a field is of the
type specified by this operand, except when the defined field is used with field
sensitivity or is in an MSDB (see rules below).

Types X, C, P, H, and F are valid in an MSDB, with the following rules applying:

Only a C or X field can contain another field.

A single field can have multiple definitions as long as no more than one
definition is arithmetic (types P, H, and F).

If a field contains any part of an arithmetic field, it must contain the entire
field.

The sequence field must be TYPE=C or X.
The sequence field cannot be part of any other field.

SSA and FSA comparisons of arithmetic fields use arithmetic rather than
logical compare operations.

Initial loading and call processing routines test for valid digits and X and P
type fields.

The following rules apply to the MSDB field length:
— TYPE=X: BYTES=1 to 256

— TYPE=P: BYTES=1to 16

— TYPE=C: BYTES=1 to 256

— TYPE=F: BYTES=4

— TYPE=H: BYTES=2

— Field types F and H must have explicit length specifications as shown
above.

— Fields should be aligned on appropriate boundaries for performance
optimization if they are involved in compare or arithmetic operations and
are a fullword or halfword long. The beginning of the segment is aligned
on a fullword boundary.

If the systrelfldname in the field statement is defined as either /SX or /CK, the
TYPE= parameter is ignored and no type is set.

When sensitivity to a field has been defined, the field is filled with a value under
these conditions:

* When the application program is not sensitive to this field on an insert call.
* When:
— The application program replaces a variable-length segment with a segment

that is longer than the existing segment,

— This field is in the added portion of the segment, and
— The application program is not sensitive to this field.

* When the application program retrieves a variable-length segment that does not
contain this field.

The TYPE parameter determines the value to be used, as follows:

IMS/ESA V6 Utilities Ref: System



DBDGEN
TYPE Value Used

X Binary zeros
P Packed decimal zero
C Blanks

If an alphanumeric field (TYPE=C) is partially present in the physical segment, the
data is moved to the field in the user’s I/O area and padded on the right with
blanks. Partially present hexadecimal or packed decimal fields are replaced with the
fill value when presented to the user.

XDFLD Statement

Use the XDFLD statement only for secondary index relationships. Its purpose is to
define the name of an indexed field that is associated to an index target segment
type, identify the index source segment type, and identify the index source segment
fields that are used in creating a secondary index. In addition, information regarding
suppressing the creation of index pointer segments is provided through this control
statement.

Restriction: This statement cannot be used to reference a segment in a DBD
where ACCESS=INDEX, SHSAM, SHISAM, HSAM, MSDB, or DEDB has been
specified.

A maximum of 32 XDFLD statements are allowed per SEGM statement. The
number of XDFLD and FIELD statements combined must not exceed 255 per
SEGM statement, and must not exceed 1000 per DBD generation.

One XDFLD statement is required for each secondary index relationship. It must
appear in the DBD generation input deck for the indexed database after the
LCHILD statement that references the index pointer segment. Only FIELD
statements for the index target segment can appear between the LCHILD statement
and the associated XDFLD statement in the input deck. The index target segment,
which is the segment defined by the preceding SEGM statement in the DBD
generation input deck must not be either a logical child segment type or a
dependent of a logical child segment type.

The format of the XDFLD statement is for each database type is shown in the
following examples. The parameters are explained in EXDELD Statement Paramete
XDFLD Statement for HISAM Databases

(1) (2)
NAME=fldname >
I—,SEGMENT= segname—l l—,CONST=char—|

»»—XDFLD

»—,SRCH=1istl >
l—,SUBSEQ=Z ist2—| l—,DDATA=l ist3—| I—,NULLVAL=vaZue1—|

I—, EXTRTN=name1—|

Chapter 1. Database Description (DBD) Generation 79



DBDGEN

Notes:

1

An XDFLD statement is not allowed during DBD generation of a simple
HISAM database.

The combined length of the CONSTANT, SEARCH, and SUBSEQUENCE
fields must not exceed 240 bytes.

XDFLD Statement for HDAM Databases

(1)

»»—XDFLD—NAME=f1dname >

I—, SEGMENT= segname—| I—, CONST=char—|

»—,SRCH=1istl >

L,SUBSEQ=Z ist2J L,DDATA=Z ist&’J |—,NULLVAL=vaZue1J

l—, EXTRTN=name1—|

Notes:

1

The combined length of the CONSTANT, SEARCH, and SUBSEQUENCE
fields must not exceed 240 bytes.

XDFLD Statement Parameter Description
NAME=

Specifies the name of the indexed data field of an index target segment. The
name specified actually represents the search field of an index pointer segment
type as being a field in the index target segment type. You can use the name
specified to qualify SSAs of calls for an index target segment type through the
search field keys of index pointer segments. This enables accessing
occurrences of an index target segment type through a primary or secondary
processing sequence based on data contained in a secondary index. fldname
must be a 1- to 8-character alphanumeric value.

Since the name specified is used to access occurrences of the index target
segment type based on the content of a secondary index, the name specified
must be unique among all field names specified for the index target segment

type.

SEGMENT=

Specifies the index source segment type for this secondary index relationship.
segname must be the name of a subsequently defined segment type, which is
hierarchically below the index target segment type or it can be the name of the
index target segment type itself. The segment name specified must not be a
logical child segment. If this operand is omitted, the index target segment type
is assumed to be the index source segment.

CONST=

Specifies a character with which every index pointer segment in a particular
secondary index is identified. This operand is optional. The purpose of this
operand is to identify all index pointer segments associated with each
secondary index when multiple secondary indexes reside in the same
secondary index database. Char must be a 1-byte self-defining term.

80 IMS/ESA V6 Utilities Ref: System



DBDGEN

SRCH=
Specifies which field or fields of the index source segment you must use as the
search field of a secondary index. listl must be a list of one to five field names
defined in the index source segment type by FIELD statements. If two or more
names are included, they must be separated by commas and enclosed in
parentheses. The sequence of names in the list is the sequence in which the
field values are concatenated in the index pointer segment search field. The
sum of the lengths of the participating fields constitutes the index target
segment indexed field length which must be reflected in segment search
arguments.

SUBSEQ=
Specifies which, if any, fields of the index source segment you must use as the
subsequence field of a secondary index. list2 must be a list of one to five field
names defined in the index source segment by FIELD statements. If two or
more names are included, they must be separated by commas and enclosed in
parentheses. The sequence of hames in the list is the sequence in which field
values are concatenated in the index pointer segment subsequence field. This
operand is optional.

DDATA=
Specifies which, if any, fields of the index source segment you must use as the
duplicate data field of a secondary index. list3 must be a list of one to five field
names defined in the index source segment by FIELD statements. If two or
more names are included, they must be separated by commas and enclosed in
parentheses. The sequence of names in the list is the sequence in which field
values are concatenated in the index pointer segment duplicate data field. This
operand is optional.

NULLVAL=
Lets you suppress the creation of index pointer segments when the index
source segment data used in the search field of an index pointer segment
contains the specified value.

The valuel operand must be a 1-byte self-defining term (X'10',C'Z", 5, or
B'00101101") or the words BLANK or ZERO. BLANK is equivalent to C' ' or
X'40'. ZERO is equivalent to X'00' or 0, but not C'0". If a packed decimal value
is required, it must be specified as a hexadecimal term with a valid number digit
and zone or sign digit (X'3F' for a packed positive 3 or X'9D' for negative 9).

No indexing is performed when each field of the index source segment
specified in the SRCH= operand has the value of this operand in every byte.
For example, if the NULLVAL=C'9' were specified, the associated index would
have no entries indexed on the value C'9999...9'.

There is a slight difference in the case of packed fields. For packed fields, each
field thatcomposes the search field is considered to be a separate packed
value.

Example: If the NULLVAL=X'9F' were specified in a case where the search
field was composed of three 2-byte packed source fields, there would be no
index entries with the search field value of X'999F999F999F' becauseall index
entries containing a X'9F' would be suppressed.

Also, with the same NULLVAL=X'9F', if the search field were one 6-byte field,

no indexing would be performed whenever the value of the search field was
X'99999999999F".

Chapter 1. Database Description (DBD) Generation 81



DBDGEN

The only form of the sign that is checked is the form specified.

Example:If X'9C' is specified, X'9F' does not cause suppression.

EXTRTN=
Specifies the name of a user-supplied index maintenance exit routine that is
used to suppress the creation of selected index pointer segments. The operand
(namel) must be the name of a user-supplied routine which receives control
whenever DL/I attempts to insert, delete or replace an index entry because of
changes occurring in the indexed database. This exit routine can inspect the
affected index source segment and decide whether or not an index pointer
segment should be generated.

If both the NULLVAL= and the EXTRTN= operands are specified, indexing of a
segment is performed only if neither causes suppression.

DBDGEN, FINISH, and END Statements

There are three additional utility control statements. Two are required (DBDGEN
and END) and one is optional (FINISH).

The DBDGEN statement indicates the end of DBD generation control statements
used to define the DBD. This statement is required. The following example shows
the format of the DBDGEN statement for all database types.

»»—DBDGEN >«

The FINISH statement is optional and is retained for compatibility. The following
example shows the format of the FINISH statement for all database types.

|—FINISH—|

The END statement indicates the end of input statements to the MVS assembler.
This statement is required. The following example shows the format of the END
statement for all database types.

»»—END >

Output

Three types of printed output and a load module, which becomes a member of the
partitioned data set named IMS.DBDLIB, are produced by a DBD generation. Each
of these outputs is described in the following sections.

Control Statement Listing
This is a listing of the input statement images to this job step.
Diagnostics
Errors discovered during the processing of each control statement result in
diagnostic messages. These messages are printed immediately following the image

82 IMS/ESA V6 Utilities Ref: System



DBDGEN

of the last control statement that is read. The message can reference either the
control statement immediately preceding it or the preceding group of control
statements. It is also possible that more than one message could be printed for
each control statement.

In this case, these messages follow each other on the output listing. After all the
control statements have been read, a further check is made of the reasonableness
of the entire deck. This might result in one or more additional diagnostic messages.

Any discovered error results in the diagnostic messages being printed, the control
statements being listed, and the other outputs being suppressed. However, all the
control statements are read and checked before the DBD generation execution is
terminated. The link-edit step of DBD generation is not processed if a control
statement error has been found.

Assembler Listing
An MVS assembler language listing of the DBD macro expansion created by DBD

generation execution is provided. You can eliminate a printout of this listing by
including an assembler language PRINT NOGEN statement.

If the DBD generation is for a database that uses VSAM as the operating system
access method, a page in the assembler listing will provide recommended values
for some of the parameters necessary to define the data sets of the database to
VSAM. Values other than those recommended might be desired for special reasons,
such as performance improvement. If the control interval size is not specified (see
SIZE= parameter later in this chapter), it defaults to the size recommended in this
assembler listing. The following example shows the output produced for a HISAM
database. The parameters provided are in the format required for MVS Access
Method Services control statements. The first DEFINE provides parameters for the
key sequenced data set (KSDS) and the second DEFINE provides parameters for
the entry sequenced data set (ESDS).

To provide a complete definition for a VSAM data set, you must add parameters for
data set name (NAME), space allocation (CYL), and volume assignment
(VOLUMEYS) to those provided by DBD generation. Optional parameters such as
FREESPACE and WRITECHECK can be included if desired.

If you use the /DBD command to allow an offline dump of a VSAM database, you
must use SHARE OPTIONS(3) in the VSAM DEFINE operation for the data sets of
the database. See Eigure 6 on page 84 for an example of MVS Access Method
Services parameters from DBD generation.

Chapter 1. Database Description (DBD) Generation 83



DBDGEN

Fx %k x k k k k k k k *k k k k Kk k Kk *k Kk Kk Kk ¥k Kk ¥ ¥ ¥ ¥ * *x *x

+*’*

+x, RECOMMENDED VSAM DEFINE CLUSTER PARAMETERS

+*’*

+*’*~k*~k********************** * %
+*,***‘k***********************‘k*
T *NOTE 1

+x, DEFINE CLUSTER (NAME(DDI3I1) -

T INDEXED KEYS (10,6) -

— RECORDSIZE (680,680) -

T DATA (CONTROLINTERVALSIZE (4096))

+%,% *NOTE 1: SHOULD SPECIFY DSNAME FOR DDI3Il
+*,*'k*‘k****‘k******‘k****‘k*****
+*’*~k***************************
— *NOTE 2

+x,«  DEFINE CLUSTER (NAME(DDI301) NONINDEXED -

— RECORDSIZE (680,680) -

T CONTROLINTERVALSIZE (4096))

+%,% *NOTE 2: SHOULD SPECIFY DSNAME FOR DDI301
+*,*"k*‘k*‘k**‘k******‘k****‘k*‘k******

Figure 6. Example of MVS Access Method Services Parameters from DBD Generation
Eigure 7 shows the DBDGEN input used to create the output in Eigure 8.

SEGM NAME=SEGB2,PARENT=((SEGA1)),BYTES=15,FREQ=3
FIELD NAME=(FLDB2,SEQ,U),BYTES=9,START=3,TYPE=C
SEGM NAME=SEGC1,PARENT=((SEGB2)),BYTES=20,FREQ=7
FIELD NAME=(FLDC1,SEQ,U),BYTES=10,START=4,TYPE=C
DBDGEN

FINISH

END

Figure 7. Example of DBDGEN Input

Segment flags are printed in DBD generation output to confirm what has been
generated by that particular DBD generation. The flags, when interpreted, tell you
which pointer options were generated; the segment insert, delete, and replace rules
specified; whether physical child pointers have been reserved in this segment's
prefix; and how many physical children are related to the segment. Segment flags
appear in the output as an assembler language defined constant (DC) statement.
The constant is defined as 8 hexadecimal digits followed by the comment,
SEGMENT FLAGS. Each pair of digits in the constant is a hexadecimal byte. To
interpret the constant, convert the first 6 digits to binary values, and the last 2 digits

to decimal values as shown in Eigure 8 on page 85.

84 IMS/ESA V6 Utilities Ref: System



DBDGEN

CONVERTED
BYTE VALUE DESCRIPTION

0 POINTER POSITIONS GENERATED:

loveenn. CTR (Counter)

Ao, Physical twin forward

..., Physical twin forward and backward
Lol Physical parent

R Logical twin forward

PP Logical twin forward and backward
...... 1. Logical parent

does, 1 Hierarchic forward

1.1 Hierarchic forward and backward

1 SEGMENT PROCESSING RULES:

10...... Insert physical

0l...... Insert virtual

11...... Insert logical

..10.... Insert nonsequential last

..01.... Insert nonsequential first

R Insert nonsequential here at current position
..10.. Replace physical
...0L.. Replace virtual

R B A Replace Togical

...... 10 Delete physical

...... 01 Delete virtual

...... 11 Delete Togical

...... 00 Bivirtual delete

2 «XXLXXX Reserved
loo..... Segment is paired
doaae Segment is a direct dependent in a FP DEDB
R R Segment's parent has two physical child
pointers; hierarchic pointers were not specified

3 0-254 Number of physical children of this segment
pointed to by physical child pointers

Figure 8. Segment Flag Codes

Segment Prefix Format Description
Output from DBD generation contains the statement:

DC X'FEFDO8OA' SEGMENT FLAGS

Convert the values to binary and decimal representations:

Byte 0 Byte 1 Byte 2 Byte 3
FE FD 08 0A
11111110 11111101 00001600 10

Byte 0 Segment has counter, physical twin forward and backward, logical
twin forward and backward, physical parent, and logical parent
pointers.

Byte 1 The insert and replace rules specified are logical, and the delete

rule specified is virtual. Nonsequenced inserts at current position.

Byte 2 Two 4-byte fields are reserved for physical child pointers in the
parent of this segment.

Byte 3 This segment is the parent of 10 physical children.

Chapter 1. Database Description (DBD) Generation 85



DBDGEN

Load Module

DBD generation is a two-step operating system job. Step 1 is a macro assembly
execution which produces an object module that becomes input to Step 2. Step 2 is
a link-edit of the object module, which produces a load module that becomes a
member of the IMS.DBDLIB library.

DBD Generation Error Conditions

Related Reading: The DBD generation error messages are contained in iMs/ESA

Messages and Codes.

If operands or parameters other than those shown for each type of database are
coded, or if operands or parameters that are necessary are omitted, one or more of
the following conditions can occur:

* DBD generation issues diagnostic messages that:

— Flag operands or parameters that are not shown for the type of database
being defined

— Indicate that operands or parameters that are required for the type of
database being defined were omitted

» DBD generation completes, but DL/I ignores the control information that was
generated by the specification of operands or parameters that are not shown for
the type of database that was defined.

» DBD generation completes, but DL/l is unable to create and access the defined
database because (a) conflicting control information was specified when
attempting to interrelate databases, or (b) segment relationships describing the
application program's view of the database were not properly defined in the DBD
generation.

» DBD generation completes, and DL/I creates and accesses a database.
However, the results provided to you are not those you desired. This condition
can occur because the default actions taken by DL/I in response to finding
missing or conflicting control information are actions that you had not considered
during DBD generation.

Examples

This section contains examples of DBD generation for different database types.

Examples without Secondary Index or Logical Relationships

The DBD generation examples provided in the following section show the
statements that are required to define HSAM, HISAM, HDAM, HIDAM, primary
HIDAM Index, GSAM, and MSDB and DEDB databases without secondary indexes
or logical relationships. Two data structures are shown in Eigure 9 on page 87. One
or both structures are the basis for the examples in Elgunﬂ_an_pa.ge_sj through

Eigure 18 on page 96.

86  IMS/ESA V6 Utilities Ref: System



DBDGEN

SKILL
NAME NAME
ADDRESS PAYROLL EXPR EDUC

Figure 9. Payroll and Skills Inventory Data Structure

Example of HSAM DBD Generation
The examples in m show the DBD generation control statements that define
the skills inventory and payroll data structures as HSAM databases.

HSAM DBD Generation of Skills Inventory Database

DBD  NAME=SKILLINV,ACCESS=HSAM
DATASET DD1=SKILHSAM,DD2=HSAMOUT,BLOCK=1,
RECORD=3000

SEGM NAME=SKILL,BYTES=31,FREQ=100
FIELD NAME=TYPE,BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,FREQ=500, PARENT=SKILL
FIELD NAME=STDCLEVL,BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,FREQ=10, PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,FREQ=5, PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C
DBDGEN

FINISH
END

Figure 10. HSAM DBD Generation (Part 1 of 2)

Chapter 1. Database Description (DBD) Generation 87



DBDGEN

HSAM DBD Generation of Payroll Database

DBD  NAME=PAYROLDB,ACCESS=HSAM
DATASET DD1=PAYROLL,DD2=PAYOUT,BLOCK=1,RECORD=1000,

SEGM NAME=NAME,BYTES=150,FREQ=1000, PARENT=0

FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C
FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C

FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM  NAME=ADDRESS,BYTES=200,FREQ=2,PARENT=NAME
FIELD NAME=HOMEADDR,BYTES=100,START=1,TYPE=C
FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM NAME=PAYROLL,BYTES=100,FREQ=1,PARENT=NAME
FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P
FIELD NAME=BASICPAY,BYTES=15,START=1,TYPE=P

DBDGEN
FINISH
END

Figure 10. HSAM DBD Generation (Part 2 of 2)

Example of HISAM DBD Generation
The examples in Eigure 11] show the DBD generation control statements that define
the skills inventory and payroll data structures as HISAM databases.

HISAM DBD Generation of Skills Inventory SKILLINV Database

DBD  NAME=SKILLINV,ACCESS=HISAM
DATASET DD1=SKLHISAM,OVFLW=HISAMOVF,

SEGM NAME=SKILL,BYTES=31,FREQ=100
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=NAME,BYTES=20,FREQ=500,PARENT=SKILL
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,FREQ=10, PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,FREQ=5, PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH
END

Figure 11. HISAM DBD Generations (Part 1 of 2)

88  IMS/ESA V6 Utilities Ref: System



HISAM DBD Generation of Payroll Database

DBD  NAME=PAYROLDB,ACCESS=HISAM
DATASET DD1=PAYROLL,OVFLW=PAYROLOV,

SEGM NAME=NAME,BYTES=150,FREQ=1000,PARENT=0

FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C
FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C

FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM  NAME=ADDRESS,BYTES=200,FREQ=2,PARENT=NAME
FIELD NAME=HOMEADDR,BYTES=100,START=1,TYPE=C
FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM NAME=PAYROLL,BYTES=100,FREQ=1,PARENT=NAME
FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P

FIELD NAME=BASICPAY,BYTES=15,START=1,TYPE=P
DBDGEN

FINISH
END

Figure 11. HISAM DBD Generations (Part 2 of 2)

Example of HDAM DBD Generation

DBDGEN

The examples in Eigure 194 show the control statements required to define the skills
inventory data structure as HDAM databases. The first example defines a database
that uses hierarchic pointers, and the second example defines a database that uses
physical child and physical twin pointers. The third example defines a database that

uses the VERSION= and EXIT= parameters.

HDAM DBD Generation of Skills Inventory SKILLINV Database with Hierarchic

Pointers

DBD NAME=SKILLINV,ACCESS=HDAM, RMNAME=(RAMDMODL,1,500,824)
DATASET DD1=SKILHDAM,BLOCK=1648,SCAN=5

SEGM  NAME=SKILL,BYTES=31,PTR=H,PARENT=0
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM  NAME=NAME,BYTES=20,PTR=H, PARENT=SKILL
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM  NAME=EXPR,BYTES=20,PTR=H, PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM  NAME=EDUC,BYTES=75,PTR=H, PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH
END

Figure 12. HDAM DBD Generation (Part 1 of 3)

Chapter 1. Database Description (DBD) Generation

89



DBDGEN

HDAM DBD Generation of Skills Inventory Database with Physical Child and
Physical Twin Pointers

DBD NAME=SKILLINV,ACCESS=HDAM, RMNAME=(RAMDMODL,1,500,824)
DATASET DD1=SKILHDAM,BLOCK=1648,SCAN=5

SEGM  NAME=SKILL,BYTES=31,PTR=T,PARENT=0
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM  NAME=NAME,BYTES=20,PTR=T,PARENT=( (SKILL,SNGL))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM  NAME=EXPR,BYTES=20,PTR=T,PARENT=( (NAME,SNGL))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM  NAME=EDUC,BYTES=75,PTR=T,PARENT=( (NAME,SNGL))
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

Figure 12. HDAM DBD Generation (Part 2 of 3)

HDAM DBD Generation of Skills Inventory SKILLINV Database with EXIT= and
VERSION= Parameters

DBD NAME=SKILLINV,ACCESS=HDAM, RMNAME=(RAMDMODL,1,500,824) ,VERSION=CCCCCC
DATASET DD1=SKILHDAM,BLOCK=1648,SCAN=5

SEGM  NAME=A,BYTES=8,PTR=H,PARENT=0,EXIT=(EXITA)
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM  NAME=B,BYTES=20,PTR=H,PARENT=SKILL, (EXIT=(EXITB, (CASCADE,KEY))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM  NAME=C,BYTES=8,PTR=H,PARENT=A,EXIT=((EXITA,PATH), (EXITC))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM  NAME=EDUC,BYTES=75,PTR=H, PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

Figure 12. HDAM DBD Generation (Part 3 of 3)

Example of HIDAM DBD Generation
A HIDAM database is indexed through the sequence field of its root segment type.

In defining the HIDAM and primary HIDAM index databases, an index relationship is
established between the HIDAM root segment type and the segment type defined in
the primary HIDAM index database. ﬁ?@ summarizes the statements required
to establish the index relationship between the HIDAM root segment type and the

90 IMS/ESA V6 Utilities Ref: System



DBDGEN

index segment type in the primary HIDAM index database. Only those operands
pertinent to the index relationship are shown.

Primary HIDAM Index Relationship
HIDAM: INDEX:

DBD NAME=dbd1l,ACCESS=HIDAM DBD NAME=dbd2,ACCESS=INDEX

SEGM NAME=segl,BYTES=, SEGM NAME=seg2,BYTES=
POINTER=
LCHILD NAME=(seg2,dbd?), LCHILD NAME=(segl,dbdl),
PTR=INDX INDEX=f1d1
FIELD NAME=(f1d1,SEQ,U), FIELD NAME=(f1d2,SEQ,U),
BYTES=,START= BYTES=,START=

Figure 13. Summary of Statements for the Primary HIDAM Index Relationship

The next two examples show the control statements that define the skills inventory
data structure as two HIDAM databases. The first is defined with hierarchic
pointers, and the second is defined with physical child and physical twin pointers.
Since a HIDAM database is indexed on the sequence field of its root segment type,
an INDEX DBD generation is required. Eigure 14 shows the control statements for
the two HIDAM DBD generations and the index DBD generation.

INDEX DBD Generation for HIDAM Database SKILLINV

DBD  NAME=INDEXDB,ACCESS=INDEX

DATASET DD1=INDXDBI,

SEGM NAME=INDEX,BYTES=21,FREQ=10000

LCHILD NAME=(SKILL,SKILLINV),INDEX=TYPE
FIELD NAME=(INDXSEQ,SEQ,U),BYTES=21,START=1
DBDGEN

FINISH

END

Figure 14. HIDAM and Primary HIDAM Index DBD Generations (Part 1 of 3)

Chapter 1. Database Description (DBD) Generation 91



DBDGEN

HIDAM DBD Generation of Skills Inventory Database with Hierarchic Pointers

DBD NAME=SKILLINV,ACCESS=HIDAM
DATASET  DD1=SKLHIDAM,BLOCK=1648,SCAN=5

SEGM  NAME=SKILL,BYTES=31,PTR=H,PARENT=0

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C
LCHILD NAME=(INDEX,INDEXDB),PTR=INDX

SEGM  NAME=NAME,BYTES=20,PTR=H,PARENT=SKILL
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=H, PARENT=NAME
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM  NAME=EDUC,BYTES=75,PTR=H, PARENT=NAME
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

Figure 14. HIDAM and Primary HIDAM Index DBD Generations (Part 2 of 3)

HIDAM DBD Generation of Skills Inventory SKILLINV Database with Physical
Child and Physical Twin Pointers

DBD NAME=SKILLINV,ACCESS=HIDAM
DATASET  DD1=SKLHIDAM,BLOCK=1648,SCAN=5

SEGM NAME=SKILL,BYTES=31,PTR=T,PARENT=0
LCHILD NAME=(INDEX,INDEXDB),PTR=INDX

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM  NAME=NAME,BYTES=20,PTR=T,PARENT=( (SKILL,SNGL))
FIELD NAME=(STDCLEVL,SEQ,U),BYTES=20,START=1,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=T,PARENT=( (NAME,SNGL))
FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C
FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=T,PARENT=( (NAME,SNGL))
FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C
FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN
FINISH
END

Figure 14. HIDAM and Primary HIDAM Index DBD Generations (Part 3 of 3)

Example of GSAM DBD Generation
ELgTLe_% shows the DBD generation control statements that define input and

output data sets for a GSAM database.

92 IMS/ESA V6 Utilities Ref: System



DBDGEN

DBD  NAME=CARDS,ACCESS=(GSAM,BSAM)

DATASET DD1=ICARDS,DD2=0CARDS,RECFM=F,RECORD=80
DBDGEN

FINISH

END

Figure 15. GSAM DBD Generations

Example of MSDB DBD Generation

m shows the DBD generation statements necessary to define the three
types of main storage database DBDs.

DBD Generation for a Nonterminal-Related MSDB without LTERM Keys

DBD NAME=MSDBLM02 ,ACCESS=MSDB

DATASET REL=NO

SEGM  NAME=LDM,BYTES=4

FIELD NAME=(FIELDSEQ,SEQ,U),BYTES=1,START=1,TYPE=X
DBDGEN

FINISH

END

Figure 16. Main Storage Database DBD Generations (Part 1 of 4)

DBD Generation for a Nonterminal-Related MSDB with LTERM Keys

DBD NAME=MSDBLM04 ,ACCESS=MSDB

DATASET REL=(TERM,FIELDLDM)

SEGM  NAME=LDM,BYTES=52

FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C
FIELD NAME=FIELDX01,BYTES=2,START=5,TYPE=X
FIELD NAME=FIELDCO1,BYTES=2,START=5,TYPE=C
FIELD NAME=FIELDHO1,BYTES=2,START=7,TYPE=H
FIELD NAME=FIELDFO1,BYTES=4,START=9,TYPE=F
FIELD NAME=FIELDCO3,BYTES=2,START=13,TYPE=C
FIELD NAME=FIELDPO1,BYTES=2,START=13,TYPE=P
FIELD NAME=FIELDPOZ,BYTES=1,START=15,TYPE=P
FIELD NAME=FIELDPO3,BYTES=16,START=16,TYPE=P
FIELD NAME=FIELDHOZ,BYTES=2,START=32,TYPE=H
FIELD NAME=FIELDFO2,BYTES=4,START=34,TYPE=F
FIELD NAME=FIELDXO3,BYTES=12,START=38,TYPE=X
FIELD NAME=FIELDHO3,BYTES=2,START=50,TYPE=H
DBDGEN

FINISH

END

Figure 16. Main Storage Database DBD Generations (Part 2 of 4)

Chapter 1. Database Description (DBD) Generation

93



DBDGEN

DBD Generation for a Fixed Terminal-Related MSDB

DBD NAME=MSDBLM05,ACCESS=MSDB

DATASET REL=(FIXED,FIELDLDM)

SEGM  NAME=LDM,BYTES=52

FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C
FIELD NAME=FIELDXO1,BYTES=2,START=5,TYPE=X
FIELD NAME=FIELDCO1,BYTES=2,START=5,TYPE=C
FIELD NAME=FIELDHO1,BYTES=2,START=7,TYPE=H
FIELD NAME=FIELDFO1,BYTES=4,START=9,TYPE=F
FIELD NAME=FIELDCO3,BYTES=2,START=13,TYPE=C
FIELD NAME=FIELDPO1,BYTES=2,START=13,TYPE=P
FIELD NAME=FIELDPO2,BYTES=1,START=15,TYPE=P
FIELD NAME=FIELDPO3,BYTES=16,START=16,TYPE=P
FIELD NAME=FIELDHOZ,BYTES=2,START=32,TYPE=H
FIELD NAME=FIELDFO2,BYTES=4,START=34,TYPE=F
FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X
FIELD NAME=FIELDHO3,BYTES=2,START=50,TYPE=H
DBDGEN

FINISH

END

Figure 16. Main Storage Database DBD Generations (Part 3 of 4)

DBD Generation for a Dynamic Terminal-Related MSDB

DBD NAME=MSDBLM06 ,ACCESS=MSDB

DATASET REL=(DYNAMIC,FIELDLDM)

SEGM  NAME=LDM,BYTES=52

FIELD NAME=FIELDSEQ,BYTES=4,START=1,TYPE=C
FIELD NAME=FIELDXO1,BYTES=2,START=5,TYPE=X
FIELD NAME=FIELDCO1,BYTES=2,START=5,TYPE=C
FIELD NAME=FIELDHO1,BYTES=2,START=7,TYPE=H
FIELD NAME=FIELDFO1,BYTES=4,START=9,TYPE=F
FIELD NAME=FIELDCO3,BYTES=2,START=13,TYPE=C
FIELD NAME=FIELDPO1,BYTES=2,START=13,TYPE=P
FIELD NAME=FIELDPO2,BYTES=1,START=15,TYPE=P
FIELD NAME=FIELDPO3,BYTES=16,START=16,TYPE=P
FIELD NAME=FIELDHOZ,BYTES=2,START=32,TYPE=H
FIELD NAME=FIELDFO2,BYTES=4,START=34,TYPE=F
FIELD NAME=FIELDX03,BYTES=12,START=38,TYPE=X
FIELD NAME=FIELDHO3,BYTES=2,START=50,TYPE=H
DBDGEN

FINISH

END

Figure 16. Main Storage Database DBD Generations (Part 4 of 4)

Example of DEDB DBD Generation
igure 17 on page 95 shows the DBD generation statements necessary to define a

data entry database DBD.

94 IMS/ESA V6 Utilities Ref: System



DBD Generation for a DEDB

DEDB1
AREAO

AREA1

AREA2

AREA3

AREA4

AREA5

AREA6

AREA7

ROOTSEG
ROOTLFLD
SDSEG

SDFLD
DDSEG

DDFLD1
DDFLD2

DBD
AREA

AREA

AREA

AREA

AREA

AREA

AREA

AREA

SEGM
FIELD
SEGM

FIELD
SEGM

FIELD
FIELD

DBDGEN
FINISH

END

NAME=DEDB0001,ACCESS=DEDB, RMNAME=RMOD1

DD1=DB1AREAO, AREA 0

MODEL=1,SIZE=1024,

ROOT=(10,5), 5 UOW'S/AREA

UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
DD1=DB1AREA1L, AREA 1
MODEL=11,SIZE=1024,

ROOT=(10,5), 5 UOW'S/AREA

UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
DD1=DB1AREAZ, AREA 2

SIZE=1024,

ROOT=(10,5), 5 UOW'S/AREA

UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
DD1=DB1AREA3, AREA 3

SIZE=4096,

ROOT=(10,5), 5 UOW'S/AREA

UowW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
DD1=DB1AREA4, AREA 4

MODEL=1,SIZE=2048,

ROOT=(10,5), 5 UOW'S/AREA

UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
DD1=DB1AREA5, AREA 5

MODEL=2,SIZE=4096,

ROOT=(10,5), 5 UOW'S/AREA

UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
DD1=DB1AREA6, AREA 6

SIZE=1024,

ROOT=(10,5), 5 UOW'S/AREA

UoW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.
DD1=DB1AREA7, AREA 7

SIZE=2048,

ROOT=(10,5), 5 UOW'S/AREA

UOW=(15,10) 5 A.P.'S + 10 DEP. OFLOW.

NAME=ROOTSEG1,PARENT=0,BYTES=(300,50)
NAME=(ROOTKEY1,SEQ,U) ,BYTES=8,START=3,TYPE=C
NAME=SDSEGNM1,PARENT=RO0TSEG1,BYTES=(300,50),
TYPE=SEQ
NAME=SDSCFLD1,BYTES=10,START=3,TYPE=C
NAME=DDSEGNM1, PARENT=RO0TSEG1,

BYTES=(40,15) ,TYPE=DIR

NAME=(DD1FLD1,SEQ,U) ,BYTES=4,START=6
NAME=DD1FLD2,BYTES=5,START=10,TYPE=P

Figure 17. Data Entry Database DBD Generations

DBDGEN

m shows the DBD generation statements necessary to define a DEDB with
subset pointers.

Chapter 1. Database Description (DBD) Generation 95



DBDGEN

DBD Generation for DEDB Subset Pointers

DBD NAME=DEDBDB,ACCESS=DEDB, RMNAME=DBFHDO40
AREA  DD1=DEDBDD,MODEL=1,SIZE=1024,
ROOT=(10,5) ,UOW=(15,10)
SEGM NAME=A,BYTES=(48,27) ,PARENT=0
FIELD NAME=(A1,SEQ,U),BYTES=10,START=3,TYPE=C
SEGM NAME=B,BYTES=(24,11),PARENT=((A,SNGL)),TYPE=DIR,SSPTR=5
FIELD NAME=(B1,SEQ,U),BYTES=5,START=3,TYPE=C
FIELD NAME=B2,BYTES=5,START=10,TYPE=C
SEGM NAME=C,BYTES=(34,32),PARENT=((B,DBLE)),RULES=(,HERE),TYPE=DIR
FIELD NAME=(C1,SEQ,U),BYTES=20,START=3,TYPE=C
SEGM NAME=D,BYTES=(52,33),PARENT=((A,DBLE)), TYPE=DIR,SSPTR=3
FIELD NAME=(D1,SEQ,U),BYTES=2,START=3,TYPE=C
SEGM NAME=B,BYTES=(52,33),PARENT=((A,DBLE)) ,RULES=(,FIRST),TYPE=DIR
FIELD NAME=(B1,SEQ,U),BYTES=2,START=3,TYPE=C
DBDGEN
FINISH
END

Note: SSPTR=n, where n indicates the number of subset pointers

Figure 18. DBD Generation of DEDB Subset Pointers Sample

Summary of Physical Database Description Examples

Examples with

An application program through a database PCB can operate on any of the
databases previously described. The value of the DBDNAME= operand on the
database PCB control statement should equal the value of the NAME= operand on
a DBD control statement of DBD generation. The SENSEG statements following the
database PCB statements in PSB generation should reference segments defined by
SEGM statements in the named DBD generation.

When a HIDAM database is used by an application program, the value of the
DBDNAME= operand on the PCB statement should equal the value of the NAME=
operand on the DBD statement for the HIDAM DBD generation. The LCHILD
statement in the HIDAM DBD provides IMS with the relationship to the necessary
INDEX DBD and index database. The INDEX DBD name should not be specified in
the DBDNAME= operand of a database PCB.

Logical Relationships
Eigure 19 an page 97 shows the three types of logical relationships that can be

defined in IMS databases. Also in the figure are the statements required to define
each type of relationship. Only the operands pertinent to the relationship are shown,
and it is assumed that each type of relationship is defined between segments in two
databases named DBD1 and DBD2.

96 IMS/ESA V6 Utilities Ref: System



DBD1

Unidirectional

SEG1
SEG2
Bidirectional
Physically
Paired
SEG1
SEG2
Virtually
Paired
SEG1
SEG2

DBD2

SEG3

SEG3

SEG4

Logical Databases

SEG3

SEG4

SEG1
SEG2 SEG3
And >
SEG1 SEG3
SEG2 SEG3 SEG4 SEG1
And >

SEG1

SEG3

SEG2 | SEG3

SEG4 | SEG1

Figure 19. Summary of Logical Relationships (Part 1 of 2)

DBDGEN

Chapter 1. Database Description (DBD) Generation 97



DBDGEN

Statements for DBD1

SEGM NAME=SEG1,PARENT=
,BYTES=,FREQ=
,POINTER=,RULES=

SEGM NAME=SEG2
,PARENT=( (SEG1,)
,SEG3, PHYSICAL,DBD2))®
,BYTES=, FREQ=
,POINTER=(, ,LPARNT,,)®
,RULES=

Note:

Unidirectional Logical Relationships
Statements for DBD2

SEGM NAME=SEG3,PARENT=
,BYTES=,FREQ=,POINTER=
,RULES=

LCHILD NAME=(SEG2,DBD1)

1. Specify symbolic and/or direct logical parent pointer. The direct access pointer can be specified only when the logical parent is in an HDAM or HIDAM database.

Statements for DBD1

SEGM NAME=SEG1,PARENT=
,BYTES=,FREQ, =
,POINTER=,RULES=

LCHILD NAME=(SEG4,DBD2)
,PAIR=SEG2

SEGM NAME=SEG2
,PARENT=( (SEG1,)
, (SEG3,PHYSICAL,DBD2))¥
,BYTES=, FREQ=
,POINTER=(, ,LPARNT,PAIRED)?®
LRULES=

Note:

Physically Paired Bidirectional Logical Relationships

Statements for DBD2

SEGM NAME=SEG3,PARENT=
,BYTES=,FREQ=
,POINTER=,RULES=

LCHILD NAME=(SEG2,DBD1)
,PAIR=SEG4

SEGM NAME=SEGA4
,PARENT=( (SEG3,)
, (SEGL,PHYSICAL,DBD1))®
,BYTES=, FREQ=
,POINTER=(, ,LPARNT, ,PAIRED)®
LRULES=

1. Specify symbolic and/or direct logical parent pointer. The direct access pointer can be specified only when the logical parent is in an HDAM or HIDAM database.

Statements for DBD1

SEGM NAME=SEG1,PARENT=
,BYTES=,FREQ=
,POINTER=,RULES=

SEGM NAME=SEG2
,PARENT=((SEG1,)
, (SEG3,PHYSICAL,DBD2))¥
,BYTES=, FREQ=
,POINTER=(,LTWIN,LPARNT,,)®
,RULES=

Notes:

Virtually Paired Bidirectional Logical Relationship

Statements for DBD2

SEGM NAME=SEG3,PARENT=
,BYTES=,FREQ=
,POINTER=,RULES=

LCHILD NAME=(SEG2,DBD1)
,POINTER=SNGL®
,PAIR=SEG4
,RULES=®

1. Specify symbolic and/or direct logical parent pointer. The direct access pointer can be specified only when the logical parent is in an HDAM or HIDAM database.

A HISAM database can participate in a virtually paired logical relationship only when the real logical child is in an HDAM or HIDAM database and its logical parent is in the

HISAM database.

2. Specify LTWIN or LTWINBWD for logical twin pointers.

3. Specify DNGL or DBLE for logical child pointers. The LCHILD RULES= operand is used when either no sequence field or a nonunique sequence field has been defined for
the virtual logical child or when the virtual logical child segment does not exist.

Figure 19. Summary of Logical Relationships (Part 2 of 2)

98 IMS/ESA V6 Utilities Ref: System



DBDGEN

Eigure 24 illustrates how logical relationships and logical databases are defined.
Part 1 depicts the physical data structures. Part 2 depicts the logical relationship
between the physical data structures. Part 3 depicts the logical databases that can
be defined as a result of the logical relationships. Examples of DBD generation
statements follow

Part 1.
Payroll Database Skills Inventory Database
NAMEMAST SKILMAST
ADDRESS PAYROLL SKILNAME
EXPR EDUC
Part 2.
Payroll Database Skills Inventory Database
NAMEMAST SKILMAST
NAMESKIL ADDRESS PAYROLL SKILNAME
EXPR EDHC
Part 3.
SKILL NAME
NAME ADDRESS PAYROLL SKILL
ADDRESS PAYROLL EXPR EDUC EXPR EDUC
Logical data structure as defined from the Logical data structure as defined from the
SKILMAST segment. NAMEMAST segment.

Figure 20. Logical Relationship between Physical Databases and the Resulting Logical Databases That Can Be
Defined

Eigure 21 on page 100 shows the DBD generation statements necessary to define:

Chapter 1. Database Description (DBD) Generation 99



DBDGEN

« The payroll and skills inventory data structures depicted in Part 2 of Eigure 2d as
a HIDAM and HDAM data base with a virtually paired bidirectional logical
relationship between the two databases

+ The logical data structures depicted in Part 3 of Eigure 2d as logical databases

DBD  NAME=PAYROLDB,ACCESS=HIDAM

DATASET DD1=PAYHIDAM,BLOCK=1648,SCAN=3

SEGM  NAME=NAMEMAST,PTR=TWINBWD,RULES=(VVV), X

BYTES=150

LCHILD NAME=(INDEX, INDEXDB),PTR=INDX

LCHILD NAME=(SKILNAME,SKILLINV),PAIR=NAMESKIL,PTR=DBLE

FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C

FIELD NAME=MANNBR,BYTES=15,START=61,TYPE=C

FIELD NAME=ADDR,BYTES=75,START=76,TYPE=C

SEGM NAME=NAMESKIL,PARENT=NAMEMAST,PTR=PAIRED, X
SOURCE= ( (SKILNAME ,DATA, SKILLINV))

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDLEVL,BYTES=20,START=22, TYPE=C

SEGM  NAME=ADDRESS,BYTES=200,PARENT=NAMEMAST

FIELD NAME=(HOMEADDR,SEQ,U),BYTES=100,START=1,TYPE=C

FIELD NAME=COMAILOC,BYTES=100,START=101,TYPE=C

SEGM  NAME=PAYROLL,BYTES=100,PARENT=NAMEMAST

FIELD NAME=(BASICPAY,SEQ,U),BYTES=15,START=1,TYPE=P

FIELD NAME=HOURS,BYTES=15,START=51,TYPE=P

DBDGEN

FINISH

END

DBD  NAME=SKILLINV,ACCESS=HDAM,RMNAME=(RAMDMODL,1,500,824)

DATASET  DD1=SKILHDAM,BLOCK=1648,SCAN=5

SEGM NAME=SKILMAST,BYTES=31,PTR=TWINBHWD

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C

FIELD NAME=STDCODE,BYTES=10,START=22,TYPE=C

SEGM NAME=SKILNAME,
PARENT=( (SKILMAST,DBLE) , (NAMEMAST, P, PAYROLDB) ),
BYTES=80, PTR=(LPARNT, LTWINBWD, TWINBWD) , X
RULES=(VVV)

FIELD NAME=(EMPLOYEE,SEQ,U),START=1,BYTES=60,TYPE=C

FIELD NAME=(STDLEVL),BYTES=20,START=61,TYPE=C

SEGM NAME=EXPR,BYTES=20,PTR=T, X
PARENT= ( (SKILNAME, SNGL))

FIELD NAME=PREVJOB,BYTES=10,START=1,TYPE=C

FIELD NAME=CLASSIF,BYTES=10,START=11,TYPE=C

SEGM NAME=EDUC,BYTES=75,PTR=T, X
PARENT=( (SKILNAME,SNGL))

FIELD NAME=GRADLEVL,BYTES=10,START=1,TYPE=C

FIELD NAME=SCHOOL,BYTES=65,START=11,TYPE=C

DBDGEN

FINISH

END

> >

Figure 21. DBD Generation Statements Examples (Part 1 of 2)

100 IMS/ESA V6 Utilities Ref: System



Examples with

DBDGEN

DBD NAME=LOGICDB,ACCESS=LOGICAL

DATASET LOGICAL

SEGM  NAME=SKILL,SOURCE=((SKILMAST,,SKILLINV))

SEGM NAME=NAME, PARENT=SKILL, X
SOURCE= ( (SKILNAME, ,SKILLINV), (NAMEMAST, ,PAYROLDB))

SEGM NAME=ADDRESS,PARENT=NAME, SOURCE=( (ADDRESS, ,PAYROLDB))

SEGM NAME=PAYROLL,PARENT=NAME, SOURCE=( (PAYROLL, ,PAYROLDB))

SEGM NAME=EXPR,PARENT=NAME, SOURCE=( (EXPR, ,SKILLINV))

SEGM NAME=EDUC,PARENT=NAME, SOURCE=( (EDUC, ,SKILLINV))

DBDGEN

FINISH

END

BD NAME=LOGIC1,ACCESS=LOGICAL

DATASET  LOGICAL

SEGM NAME=NAME, SOURCE= ( (NAMEMAST, ,PAYROLDB) )

SEGM NAME=ADDRESS,PARENT=NAME, SOURCE=( (ADDRESS, ,PAYROLDB))
SEGM NAME=PAYROLL,PARENT=NAME, SOURCE=( (PAYROLL, ,PAYROLDB))

SEGM  NAME=SKILL,PARENT=NAME, X
SOURCE= ( (NAMESKIL, ,PAYROLDB) , (SKILMAST,,SKILLINV))

SEGM  NAME=EXPR,SOURCE=( (EXPR, ,SKILLINV)),PARENT=SKILL

SEGM  NAME=EDUC,SOURCE=( (EDUC, ,SKILLINV)),PARENT=SKILL

DBDGEN

FINISH

END

Figure 21. DBD Generation Statements Examples (Part 2 of 2)

Secondary Indexes

The statements required to establish a secondary index relationship between a
segment type in an indexed database and a segment type in a secondary index
database are summarized in [Eigure 22, Ei , and

. The statements required when the index target and index source
segment types are the same are shown in Eigure 23. In Eigure 23, the index target
and index source segment types are different. w shows the statements
required for a shared secondary index DBD generation. In all three figures, only
those operands pertinent to the secondary index relationships are shown.

Indexed DBD

DBD NAME=DBD1,ACCESS=

SEGMNAME=SEG1,PARENT=
,BYTES

FILED NAME=(FLD2,SEQ,...),BYTES=

FIELD NAME=FLD1,BYTES=

(Note 1) ——p

,START=
Specifiy
symbolic LCHILD NAME=(SEG3,DBD2),
or direct ——p POINTER=INDX
pointer
(Note 2)

XDFLD NAME=XFLD,SRCH=FL

Index DBD
DBD NAME=DBD2,ACCESS=INDEX

SEGM.NAME=SEG3,PARENT:O,BYTES:

FIELD NAME=(FLD2,SEQ,...),BYTES=
,START=1

LCHILD NAME=SEG1,DBD1),

Figure 22. Same Index Source and Target Segment Types

Notes to mz

Chapter 1. Database Description (DBD) Generation

INDEX=XFLD,POINTER=SNGL Specifiy
» symbolic
or direct
pointer
(Note 2)
101



DBDGEN

1. The index target segment type can be a root or a dependent segment type; it
must not be either a logical child segment type or a dependent of a logical child
segment type. The index source segment type must not be a logical child
segment type.

2. The example is shown with direct pointers for the index pointer segment types
in the index DBD. If symbolic pointing is desired, POINTER=SYMB should be
specified on both LCHILD statements; symbolic pointing is required when the
index target segment type is in a HISAM database.

Indexed DBD IndexDBD
DBD NAME=DBD1,ACCESS= DBD NAME=DBD2,ACCESS=INDEX
(Note 1) —® SEGMNAME=SEG1,BYTES=,PARENT= SEGM NAME=SEG4,PARENT=0,BYTES=
Specify LCHILD NAME=(SEG4,DBD2), FIELD NAME=(FLD4,SEQ,...)
symbolic——  POINTER=INDX ,START=1,BYTES=
ordirect
pointer
(note 2). XLFLD NAME=XFLD,SEGMENT=SEGS3, LCHILD NAME=(SEG1,DBD1), Specify
SRCH=FLD3,... INDEX=XFLD,POINTER=SNGL  symbolic
ordirect

SEGMNAME=SEG2,BYTES= pointer
,PARENT=SEG1 (note 2).

(Note 1) —» SEGMNAME=SEG3

,PARENT=SEG2

FIELDNAME=FLD3,BYTES=
,START=

Figure 23. Different Index Source and Target Segment Types

Notes to Eigure 23:

1.

The index target segment type can be a root or a dependent segment type. It
must not be either a logical child segment type or a dependent of a logical child
segment type. The index source segment type must not be a logical child
segment type.

The example is shown with direct pointers for the index pointer segment types
in the index DBD. If symbolic pointing is desired, POINTER=SYMB should be
specified on both LCHILD statements; symbolic pointing is required when the
index target segment type is in a HISAM database.

102 IMS/ESA V6 Utilities Ref: System



Indexed DBD
DBDNAME=DBD1,ACCESS=

SEGMNAME=SEG1,BYTES=,PARENT=

FIELDNAME=FLD1,BYTES=
,START=

FIELD NAME=FLD2,BYTES=
,START=

LCHILD NAME=(SEG3,DBD2),
POINTER=INDX

XDFLD NAME=XFLD1,SRCH=FLD2,
CONST=C?2',...

SEGMNAME=SEG2,BYTES=,PARENT=

FIELD NAME=FLD4,BYTES=
,START=

LCHILD NAME=(SEG5,DBD3),
POINTER=INDX

XDFLD NAME=XFLD2,SRCH=FLD4,
CONST=C'?1'...

DBDGEN

Index DBD
DBD NAME=(DBD2,DBD3),ACCESS=INDEX

SEGMNAME=SEG3,PARENT=0,BYTES=1
FIELD NAME=FLD3,SEQ,...),
START=1,BYTES=

LCHILD NAME=SEG1,DBD1),

INDEX=XFLD1

SEGMNAME=SEG5,PARENT=0,BYTES=
FIELDNAME=FLD10,SEQ.,...),
START=1,BYTES=

LCHILD NAME=(SEG2,DBD1),

INDEX=XFLD2

Figure 24. Shared Secondary Index Database DBD Generation

This example is shown with direct pointers for the index pointer segment types, and
with the index source segment type, and the index target segment type the same.
Symbolic pointing or differing index source and target segments types can be used;
however, all secondary index databases in the shared index must uniformly specify
either symbolic pointers or direct pointers; a mixture of symbolic and direct pointing
is not allowed in a shared secondary index database.

Example of DBDGEN for Secondary Index Databases
m shows a database indexed by two secondary indexes. The
first secondary index, X1, uses the same segment for its index target segment and

index source segment; the second secondary index, X2, has an index target
segment that is different from its index source segment type.

Chapter 1. Database Description (DBD) Generation 103



DBDGEN

104

DB

DBDNAME=DTA1 DBDNAME=X1
Target/Source Segment
DA < g g X1SEG
DC
%,
Qy
S
S,
&
Q}
DBDNAME =X2
DD DE X2 SEG
Source
Segment

Figure 25. Database Indexed by Two Secondary Indexes

m shows the DBD generation statements that define the indexed database

and the secondary index databases.

DBDGEN for Indexed Database

NAME=DTA1,ACCESS=HDAM, RMNAME= (RANDMODL, 1,500,824)
DATASET DD1=D1,MODEL=1

DBD

SEGM
FIELD
LCHILD
XDFLD
SEGM
FIELD
SEGM
FIELD
LCHILD
XDFLD
SEGM
FIELD
SEGM
FIELD
DBDGEN
FINISH
END

Figure 26. Indexed Database and Secondary Index Database (Part 1 of 3)

NAME=DA, PARENT=0,BYTES=15
NAME=(DAF1,SEQ) ,BYTES=5, START=1
NAME=(X1SEG,X1),PTR=INDX
NAME=DAF1X, SRCH=DAF1

NAME=DB, PARENT=DA, BYTES=20
NAME= (DBF1,SEQ) ,BYTES=5, START=1
NAME=DC, PARENT=DA, BYTES=20
NAME=(DCF1,SEQ) ,BYTES=5,START=1
NAME= (X2SEG,X2) , PTR=SYMB
NAME=DCF1X, SRCH=DEF1, SEGMENT=DE
NAME=DD, PARENT=DC, BYTES=25
NAME=(DDF1,SEQ) ,BYTES=5,START=1
NAME=DE, PARENT=DC, BYTES=25
NAME=(DEF1,SEQ) ,BYTES=5,START=1

IMS/ESA V6 Utilities Ref: System




DBDGEN

DBDGEN for Secondary Index X1

DBD NAME=X1,ACCESS=INDEX

DATASET DD1=X1P,MODEL=1

SEGM  NAME=X1SEG,BYTES=5,PARENT=0

FIELD NAME=(X1F1,SEQ,U),START=1,BYTES=5
LCHILD NAME=(DA,DTA1),INDEX=DAF1X,POINTER=SNGL
DBDGEN

FINISH

END

Figure 26. Indexed Database and Secondary Index Database (Part 2 of 3)

DBDGEN for Secondary Index X2

DBD NAME=X2,ACCESS=INDEX

DATASET DD1=X2P,MODEL=1

SEGM  NAME=X2SEG,BYTES=5,PARENT=0

FIELD NAME=(X2F1,SEQ,U),START=1,BYTES=5
LCHILD NAME=(DC,DTA1),INDEX=DCF1X,POINTER=SYMB
DBDGEN

FINISH

END

Figure 26. Indexed Database and Secondary Index Database (Part 3 of 3)

Example of DBDGEN for a Shared Secondary Index Database
ﬂ% shows a database indexed by three secondary indexes in a shared

secondary index database. Each secondary index uses the same segment as the
index target segment and the index source segment. Eigure 28 on page 108 shows
the DBD generation statements that define the indexed database, the primary index
data base, and the shared secondary index database.

DBDNAME=DTA3 DBDNAME=
(X4,X5,X6)
DA X Target/Source X4
Segment
DB DC A Target/Source X5
Segment
“
DD DE Target/Source
Segment

Figure 27. Database Indexed by Three Secondary Indexes in a Shared Secondary Index
Database

Chapter 1. Database Description (DBD) Generation 105



DBDGEN

DBDGEN for Indexed Database

DBD NAME=DTA3,ACCESS=HIDAM

DATASET DD1=D1

SEGM NAME=DA,PARENT=0,BYTES=15
LCHILD NAME=(INDEX,X2),PTR=INDX

FIELD NAME=(DAF1,SEQ),BYTES=5,START=1
LCHILD NAME=(X4A,X4),PTR=INDX

XDFLD NAME=DAF1X,SRCH=DAF1,CONST=C'1"'
SEGM NAME=DB, PARENT=DA,BYTES=20
FIELD NAME=(DBF1,SEQ),BYTES=5,START=1
SEGM NAME=DC, PARENT=DA,BYTES=20
FIELD NAME=(DCF1,SEQ),BYTES=5,START=1
LCHILD NAME=(X5A,X5),PTR=INDX

XDFLD NAME=DCF1X,SRCH=DCF1,CONST=C'2'
SEGM NAME=DD, PARENT=DC,BYTES=25
FIELD NAME=(DDF1,SEQ),BYTES=5,START=1
SEGM NAME=DE,PARENT=DC,BYTES=25
FIELD NAME=(DEF1,SEQ),BYTES=5,START=1
LCHILD NAME=(X6A,X6),PTR=INDX

XDFLD NAME=DEF1X,SRCH=DEF1,CONST=C'3'
DBDGEN

FINISH

END

Figure 28. Indexed Database, Primary Index Database, and Shared Secondary Index
Database DBD Generations (Part 1 of 3)

DBDGEN for Primary Index Database

DBD  NAME=X2,ACCESS=INDEX

DATASET DD1=X2P

SEGM NAME=INDEX,BYTES=5

LCHILD NAME=(DA,DTA3), INDEX=DAF1

FIELD NAME=(INDXSEQ,SEQ,U),BYTES=5,START=1
DBDGEN

FINISH

END

Figure 28. Indexed Database, Primary Index Database, and Shared Secondary Index
Database DBD Generations (Part 2 of 3)

106 IMS/ESA V6 Utilities Ref: System



DBDGEN for Shared Secondary Index Database

DBD  NAME=(X4,X5,X6) ,ACCESS=INDEX
DATASET DD1=X4P,0VFLW=X40

SEGM NAME=X4A,BYTES=6,PARENT=0

FIELD NAME=(X4F1,SEQ,U),START=1,BYTES=6
LCHILD NAME=(DA,DTA3),INDEX=DAF1X

SEGM NAME=X5A,BYTES=6,PARENT=0

FIELD NAME=(X5F1,SEQ,M),START=1,BYTES=6
LCHILD NAME=(DC,DTA3),INDEX=DCF1X

SEGM NAME=X6A,BYTES=6,PARENT=0

FIELD NAME=(X6F1,SEQ,M),START=1,BYTES=6
LCHILD NAME=(DE,DTA3),INDEX=DEF1X
DBDGEN

FINISH

END

Figure 28. Indexed Database, Primary Index Database, and Shared Secondary Index

Database DBD Generations (Part 3 of 3)

Chapter 1. Database Description (DBD) Generation

107



108 IMS/ESA V6 Utilities Ref: System



Chapter 2. Program Specification Block (PSB) Generation

Before executing an application program under IMS, you must describe that
program and its use of logical terminals and logical data structures through a
program specification block (PSB) generation. The PSB generation statements
supply the identification and characteristics of the IMS resources to be used. These
program communication blocks (PCBs) represent message destinations and
databases used by the application program. In addition, there must be a statement
supplying characteristics of the application program itself. There must be one PSB
for each message, batch, or Fast Path program. The name of the PSB and its
associated application program must be the same in a telecommunications system.

If you require only an 1/O PCB and a single, modifiable alternate PCB, you can use
a generated PSB (GPSB) to describe the resources required for your application
program. GPSBs can be used in any online environment, and are typically used in
DCCTL application programs. You do not need to perform PSBGEN for GPSBs.

Related Reading:For more information on GPSBs, refer to IMS/ESA Installatior]

Molume 2: System Definition and Tailoring and IMS/ESA Administration Guide)
ransaction Manager,

In this Chapter:

Elnput and Qutput!

FPSBGEN Procedure” on page. 111

Input and Output

PSB generation places the created PSB in the PSB library. Each PSB is a member
of the operating system partitioned data set IMS.PSBLIB. For IMS batch execution
(DL/I region type), the necessary database PCB PSB is loaded from PSBLIB and
the expanded PSB needed for DL/l database PCB statement processing is built
from it. Before online execution, ACBGEN must be performed to prebuild the
expanded PSBs into ACBLIB. PSBLIB is used as input to the ACBGEN process.
Batch executions can also use prebuilt blocks from ACBLIB by specifying region
type 'DBB' on the JCL execute statement.

The six types of statements used for a PSB generation are:

» PCB statements for output message destinations other than the source of the
input message. These statements are called alternate PCBs, and they are used
in message processing, batch message processing, and Fast Path programs that
interface with the IMS message queues.

» PCB statements for DL/I and Fast Path databases. These statements are used
by message, batch, and Fast Path processing programs to define interfaces to a
database.

* SENSEG statements for segments within a database to which the application
program is sensitive. These statements are used with message, batch, and Fast
Path processing programs to define logical data structures.

» SENFLD statements for fields within a segment to which the application program
is sensitive.

© Copyright IBM Corp. 1974, 2000 109



PSBGEN

* PSBGEN statement for each PSB. This statement is used to indicate the
characteristics of the associated application program.

* An assembler language END statement is required for each PSBGEN statement.

The above list does not include a PCB for the input message source. /0 PCBs
exist within the IMS online control program nucleus for this purpose. Upon entry to
the application program used for message processing, a PCB pointer to the source
of the input message is provided as the first entry in a list of PCB address pointers.
The remainder of the PCB list has a direct relationship to the PCBs as defined
within the associated PSB and must be defined in the application program in the
same order as defined during PSB generation. All PCBs can be used by the
application program when making DL/I message and database calls. Only one PCB
is used in a particular DL/I call.

You can exclude alternate, DL/I, Fast Path, and GSAM PCBs from the PCB list that
is passed to the application program by defining a name for the PCB
(PCBNAME=name) and specifying LIST=NO. You must name the PCB when you
want to issue calls using the application interface block (AIB). The AIB can be used
for all types of PCBs.

Related Reading:For a more detailed explanation, refer to IMS/ESA Application

To test message processing or batch message processing programs in a batch
processing region, use the CMPAT option of the PSBGEN statement. When
CMPAT=YES is specified, IMS provides PCBs to the application as if it were
executing in a message processing region. Using CMPAT eliminates the need to
recompile the program between batch and online executions.

In the case of a batch program, no I/O PCB exists in the list unless you request it
with the CMPAT option on the PSBGEN statement. Therefore, if CMPAT=YES is not
specified, the PCB list provided to the program has a direct relationship to the
PCBs within the PSB. No TP PCBs should be contained in a PSB for batch
processing in a batch processing region.

In a TM batch environment, CMPAT=YES is implied and cannot be overridden by
PSBGEN. The PCB list for application programs running in a DCCTL batch region
always contains an I/O PCB.

You can specify alternate PCBs in a PSB associated with a batch program
operative in an IMS batch message processing region. These PCBs are available
for output message queuing. A batch program operative in batch message
processing regions can access messages from the input message queue. An I/O
PCB is always provided as in the case of a message processing program.

You can specify alternate and modifiable alternate PCBs in a PSB associated with a
Fast Path program executing in a Fast Path region. A response alternate PCB with
the same PTERM can be used to send a Fast Path output message back to the
original PTERM with a different component attached to the terminal. You can use
an alternate PCB (non-response mode) to send an output message to any terminal
or IMS message queue.

You can reference the PCB list passed to the application program upon entry to the
application program by the names defined within the application program for making
DL/I calls and interrogating PCB information (status codes and feedback
information). The address of a PCB can be the second parameter in a DL/I call

110 IMS/ESA Ve Utilities Ref: System



PSBGEN

from an application program to IMS. The PCB address can represent the source of
the input message, the destination for an output message, or a database. Upon
completion of a DL/I call, the PCB contains status and feedback information
pertinent to the call.

Related Reading:For greater detail, refer to IMS/ESA Application Programming/
Database Managet.

PSBGEN Procedure

IMS system definition places the procedure named PSBGEN in the IMS.PROCLIB
procedure library.

This two-step assemble and link-edit procedure produces PSBs. The first step, Step
C, an operating system assembly, is performed after the procedure is invoked. The
second step, Step L, is a link-edit which takes the assembly output from Step C and
places the PSBs in IMS.PSBLIB.

PROC Statement

The procedure statement is:

// PROC MBR=TEMPNAME,SOUT=A,RGN=512K,SYS2=

//C  EXEC PGM=ASMA90,REGION=&RGN,PARM="'0BJECT,NODECK'
//SYSLIB DD DSN=IMS.&SYS2 MACLIB,DISP=SHR

//SYSLIN DD UNIT=SYSDA,DISP=(,PASS),

/! SPACE=(80, (100,100) ,RLSE),

/] DCB= (BLKSIZE=80,RECFM=F,LRECL=80)

//SYSPRINT DD SYSOUT=&SOUT DCB=BLKSIZE=1089,;

/] SPACE=(121, (300,300) ,RLSE, ,ROUND)

//SYSUTL DD UNIT=SYSDA,DISP=(,DELETE),

/] SPACE=(CYL, (10,5))

//L EXEC PGM=IEWL,PARM='XREF,LIST',COND=(0,LT,C),REGION=120K

//SYSLIN DD
//SYSPRINT DD
//
//SYSLMOD DD
//SYSUTL DD
//

DSN=+.C.SYSLIN,DISP=(OLD,DELETE)
SYSOUT=&SOUT DCB=BLKSIZE=1089,;
SPACE=(121, (90,90) ,RLSE)
DSN=IMS.&SYS2 PSBLIB(&MBR),DISP=SHR
UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

SPACE=(1024,(100,10) ,RLSE) ,DISP=(,DELETE)

Figure 29. PSBGEN Procedure Statement

MBR=

Is the name of the PSB generated. This name should be the same as the name
specified on the PSBNAME= operand of the PSBGEN statement. If this
precaution is not followed, a user ABEND 929 can occur during execution, or
message DFS929I (“BLDL FAILED FOR MEMBER?”) can be received during an
ACBGEN “BUILD PSB” operation.

SOUT=

Specifies the SYSOUT class. The default is A.

RGN=

Specifies the region size for execution of the PSBGEN utility. The default is

512KB.
SYS2=

Specifies an optional second level dsname qualifier for those data sets which

Chapter 2. Program Specification Block (PSB) Generation 111



PSBGEN

are designated as “Optional Replicate” in an XRF complex. When specified, the
operand must be enclosed in quotes and must include a trailing period, for
example, SYS2='IMSA.".

Step C

Step C is the assembly step.

Related Reading:For information on assembly steps, refer to High Level Assembler
Programmer’s Guide.

DD Statements

SYSIN DD
Defines the input data sets to step C. These DD statements must be provided
when invoking the procedure.

Step L
Step L is the link-edit step.

Example:This step can be run using AMODE=31, RMODE=24 instead of the
default AMODE=24, RMODE=24 by adding AMODE=31 to the link-edit EXEC
statement PARM list as shown below.

//L EXEC PGM=IEWL,PARM='XREF,LIST,AMODE=31",
1/ COND=(0,LT,C) ,REGION=120K

If you do not specify different values for AMODE or RMODE, the default values are
in effect. You must always run the link-edit step with RMODE=24.

Related Reading:For more information about linkage editors, refer to MVS/DFP
Linkage Editor and Loader.

DD Statements

SYSLMOD DD
Defines an output partitioned data set, IMS.PSBLIB, for the linkage editor.

Invoking the Procedure
The JCL statements in Eigure 3d are used to invoke the PSBGEN procedure.
//PSBGEN ~ JOB MSGLEVEL=1

// EXEC PROC=PSBGEN,MBR=nnnnnnnn
//C.SYSIN DD *

PCB
SENSEG (The control statements for PSB generation)
PSBGEN PSBNAME=TEMPNAME
END

/*

Figure 30. Procedure for Invoking PSBGEN

Utility Control Statements

No PCB statement is needed in PSB generation for the 1/O PCB. IMS builds it
automatically. This is true for message processing application programs, batch

processing application programs that operate in IMS batch message processing
regions and need to obtain input messages from the IMS message queues, and

112 IMS/ESA Ve Utilities Ref: System



PSBGEN

Fast Path application programs that operate in an IMS Fast Path dependent region.
Batch processing application programs that operate in IMS DB batch processing
regions never have an 1/0 PCB, unless specifically requested in the PSBGEN
macro statement.

Alternate PCB Statement

The alternate PCB describes a destination other than the source of the current input
message. This statement allows the application program to send output messages
to a destination other than the source of an input message.

Requirement: A PCB statement is required for each destination to which output is to
be sent.

These messages can be sent to either an output terminal or an input transaction
queue to be processed by another program. Each output message destination
requires a separate alternate PCB destination. If the input source terminal is all that
is required to respond with output, do not include any PCB statements of this type.
Message processing programs, batch message processing programs, and Fast
Path programs can have alternate PCB statements in their associated PSBs. An
alternate PCB cannot be used to send a message to a Fast Path transaction;
however, Fast Path application programs can use an alternate PCB to route
messages to any terminal or IMS transaction.

Alternate PCB statements must be first in the PSB generation control card deck,

followed by the statements identifying PCBs associated with IMS databases. The
following diagram shows the alternate PCB statement format.

(1)

> |_ _| PCB—TYPE=TP >
label i:, LTERM:namﬂ L J:NO
,NAME=name L,ALTRESP=——YES
NO NO L NO
—,SAMETRM=£YES —,MODI FY=J:YES ,EXPRESS=——YES
(1) YES

—,PCBNAME=pcbname , LIST=£N0

Notes:

1 label and PCBNAME are mutually exclusive. Use only the label or the
PCBNAME= parameter.

label
Specifies an alphanumeric label from 1 to 8 characters long, that is valid for an
assembler language statement. The labels for the PCB statements within a PSB
must be unique.

Exception:Do not specify this parameter if the PCBNAME= parameter is used.

PCB
Indicates that this is a PCB statement.

Chapter 2. Program Specification Block (PSB) Generation 113



PSBGEN

TYPE=TP
Is a required keyword parameter for all alternate PCBs.

LTERM=|NAME=
Is the parameter keyword for the output message destination. The “name” is
the actual destination of the message and is either a logical terminal name
(LTERM=) or a transaction-code name (NAME=). When the name is a
transaction-code name, output messages to this PCB are enqueued for input to
the program used to process the transaction code named by the NAME
operand. The name must be from 1- to 8-alphanumeric characters in length,
and must be specified in the user’s IMS system definition as a logical terminal
name or transaction code. The LTERM= or NAME= operand is required except
when MODIFY=YES is specified.

ALTRESP=
Specifies whether (YES) or not (NO) this alternate PCB can be used instead of
the 1/0 PCB for responding to terminals in response mode, conversational
mode, or exclusive mode. The default value is NO. ALTRESP=YES is only valid
for alternate PCBs.

SAMETRM=
Specifies whether (YES) or not (NO) IMS verifies that the logical terminal
named in the response alternate PCB is assigned to the same physical terminal
as the logical terminal that originated the input message. The default value is
NO. You must specify SAMETRM=YES for response alternate PCBs used by
conversational programs and programs operating with terminals in response
mode. SAMETRM=NO should be specified if alternate response PCBs are used
to send messages to output-only devices that are in exclusive mode.

MODIFY=
Specifies whether the alternate PCB is modifiable (YES). This feature allows for
the dynamic modification of the destination name associated with this PCB.
Default value is NO. If MODIFY=YES is specified, omit the NAME= or LTERM=
operand.

EXPRESS=
Specifies whether messages from this alternate PCB are to be sent (YES) or
are to be backed out (NO) if the application program should abend.

YES When specified, indicates EXPRESS messages can be sent to the
destination terminal even though the program abends or issues a ROLL
or ROLB call. For all PCBs (express or non-express) under these
conditions, messages inserted but not made available for transmission
are canceled, while messages made available for transmission are
never cancelled.

For a non-express PCB, the message is not available for transmission
to its destination until the program reaches a sync (commit) point. The
sync point occurs when the program terminates, issues a CHKP call, or
requests the next input message (if the transaction is defined with
MODE=SNGL).

For an express PCB, the message is available for transmission to the
destination when IMS knows it has the complete message. The
message is available when a PURG call is made using that PCB, or
when the program requests the next input message.

When the PSB is defined as a Fast Path application in the IMS system
definition, EXPRESS=YES, if specified, will be ignored at execution
time for a response alternate PCB.

114 IMS/ESA V6 Utilities Ref: System



PSBGEN

NO When specified, indicates messages are backed out if the application
program abends. NO is the default.

PCBNAME=
Specifies the name of the PCB. The PCB name must be an alphanumeric,
8-byte character string that follows standard naming conventions. The PCB
name must be unique within the PSB.

Exception:Do not specify this parameter if a label is used.

LIST=
Specifies whether the named PCB is included in the PCB list passed to the
application program at entry. Specify YES to include a named PCB in the PCB
list. Specify NO to exclude a named PCB from the PCB list. YES is the default.

To exclude a PCB from the PCB list, you must assign the PCB a name with the
PCBNAME= parameter. You can specify LIST=NO if an application program
does not need a PCB’s address.

DL/l or Fast Path Database PCB Statement

The second type of statement in a PSB generation input record specifies a
description of a PCB for a DL/l or a Fast Path database. Although one or more
database PCBs are usually included in a PSB, the second type of statement is not
always required. For example, a message switching program or conversational
message program might not require access to a DL/l database. Therefore, a
database PCB is not required.

In a DCCTL environment, database PCBs (except for GSAM PCBs) are not
supported, but might be included in the PSBGEN. Application programs that
execute in a DCCTL environment and that attempt to use a database PCB wiill
receive an AD status code.

The maximum number of database PCBs that can be defined in a PSBGEN is 500
minus the number of alternate TP PCBs defined. This is the maximum value for
application programs executing in all IMS region types (MSG, DL/I, and so on).

The following diagram shows the format for the DL/l database PCB statement.

> PCB—TYPE=DB—|:,DBDNAME' name
L (1) ,NAME=J
label

(1) I—,PROCOPT=-| A 'J L J:NO
,SB=

L, PCBNAME=pcbname COND

\/

»— KEYLEN=value |_ _| ,VIEW=MSDB
L‘ B ’J ,PROCSEQ=index dbname

Chapter 2. Program Specification Block (PSB) Generation 115



PSBGEN

116

v
v
A

YES
,LIST=J:N0

A:
| C (2) |
T T T T J OJ T |
ST ] GJ
A P A
T L G
A
[ ] ]
B P
B:
|—SINGLE |

—,POS= I
Lwoiripee

Notes:

1 label and PCBNAME are mutually exclusive. Use only the label or the
PCBNAME= parameter.

2 These operands can be selected in any combination; if G, I, R, and D are
selected, use A instead (A = G, |, R, and D combined).

label
An optional label used to allow the SBPARM control statement in the DFSCTL
file to reference specific PCBs. If specified, this must be an alphanumeric 1- to
8-byte character string that is valid for an MVS assembler language statement.
The labels for the PCB statements within a PSB must be unique.

Exception:Do not specify this parameter if PCBNAME= is used.

TYPE=DB
Is a required keyword parameter for all DL/l database PCBs.

DBDNAME= or NAME=
Is the parameter keyword for the name that specifies the physical or logical
DBD to be used as the primary source of database segments for this logical
data structure. The logical structure, which is defined under this PCB with one
or more SENSEG statements, is the hierarchical set of data segments to which
the associated application program is sensitive. This logical hierarchy of data
segments might or might not exist as a physical hierarchy. This depends on the
relationship of segments defined by SENSEG statements and the existence of
these segments in one or more databases as defined by their database

IMS/ESA V6 Utilities Ref: System



PSBGEN

descriptions (DBDs). All SENSEG statements that follow this PCB statement
and precede the next PCB or PSBGEN statement must refer to segments
defined in the DBD named in the DBDNAME= or NAME= operand of this PCB.

(Refer to ESENSEG Statement” on page 126 for more information.)

The keywords DBDNAME and NAME are synonymous. DBDNAME is more
descriptive, and NAME is kept for compatibility with earlier releases.

PCBNAME=
Specifies the name of the PCB. The PCB name must be an alphanumeric,
8-byte character string that follows standard naming conventions.

Exception:Do not specify this parameter if the PCB statement includes label.

PROCOPT= (with full function)
Is the parameter keyword for the processing options on sensitive segments
declared in this PCB that you can use in an associated application program.
You can use a maximum of four options with this operand. The letters in the
operand have the following meaning:

G
I

> O =X

Get function.

Insert function.

Replace function. Includes G.
Delete function. Includes G.

All, includes the above four functions. PROCOPT=A is the default
setting.

Required if command code D is to be used, except for ISRT calls in a
batch program that is not sensitive to fields. PROCOPT=P is not
required if command code D is used when processing DEDBs. Refer to

the section, tUse of PROCOPT=(with Fast Path)” an page 119 for

information on how to use PROCOPT=P with DEDBs.

If the O option is used for a PCB, IMS does not check the ownership of
the segments returned. Therefore, the read without integrity program
might get a segment that has been updated by another program. If the
updating program abends and backs out, the read without integrity
program will have a segment that does not exist in the database and
never did. If a segment has been deleted and another segment of the
same type has been inserted in the same location, the segment data,
and all subsequent data returned to the application, can be from a
different database record. Therefore, if you use the O option do not
update based on data read with that option. O must be specified as GO,
GON, GONP, GOT, GOTP, or GOP only.

Related Reading:For more information, refer to IMS/ESA Application
I e - ad.

Reduces the number of abends that read-only application programs are
subject to. Read-only application programs can reference data being
updated by another application program. When this happens, an invalid
pointer to the data might exist. If an invalid pointer is detected, the
read-only application program abends. By specifying N, you avoid this.
A GG status code is returned to the program instead. The program must
determine whether to terminate processing, continue processing by
reading a different segment, or access the data using a different path.
N must be specified as GON, GONH, or GONP.

Chapter 2. Program Specification Block (PSB) Generation 117



PSBGEN

118

GS

LS

Is the same as the N operand, except that T causes DL/I to
automatically retry the operation. If the retry fails, a GG status code is
returned to the application program. T must be specified as GOT, GOTH,
or GOTP.

Enables exclusive use of the database or segment by online programs.
Used in conjunction with G, I, D, R, and A.

Load function for database loading (except HIDAM).

Get segments in ascending sequence only (HSAM only). If you specify
GS for HSAM databases, they will be read using the Queued
Sequential Access Method (QSAM) instead of the basic Sequential
Access Method (BSAM) in a DL/I IMS region.

Segments loaded in ascending sequence only (HIDAM, HDAM). This
load option is required for HIDAM. Because you must specify LS for
HIDAM databases, the index for the root segment sequence field will be
created at the time the database is loaded.

Specifies high-speed sequential processing for the application program
using a particular PSB. The restrictions for using PROCOPT=H are:

* It can be used for DEDBs only.

» It is allowed on the PCB level and not on the segment level.

* It must be used with other Fast Path processing options.

* A maximum of four PROCOPT options can be specified, including H.
* It can only be specified for BMPs.

* Only one PROCOPT=H PCB per database per PSB is allowed. If a
BMP using HSSP uses multiple PCBs with PROCOPT=H for the
same database within the same PSB, all database calls using a PCB
other than the first one used receive an FH status code. You can use
the NOPROCH keyword on the SETO statement to alleviate this
restriction.

If you do not specify the PROCOPT operand, it defaults to PROCOPT=A. The
replace and delete functions also imply the Get function.

A user abend (U8XX) from the retrieve module (DFSDCRO00) can occur with
PROCOPT=GO if another program updates pointers when this program is following
the pointers. A U0800 or U0852 abend can also occur in the VLEXP routine, or in
the retrieve module, if an invalid compressed segment is detected. Pointers are
updated during the insert and delete functions and during replacement of a
variable-length segment. To reduce the number of abends of this type, code the
PROCOPT= operand withan N ora T.

Notes:

1. If any PCBs in the PSB have a PROCOPT of L or LS and either explicitly
reference HISAM or HIDAM databases, or implicitly reference INDEX
databases, no other PCB in the same PSB can reference any of the above
databases, either explicitly or implicitly, with a PROCOPT other than L or LS.
The SENSEG statements within that PCB should not contain INDICES=
operands.

2. If L is specified for a PCB that references a database with multiple data set

groups,

the PCB should include at least one SENSEG statement for each data

set group in the database.

IMS/ESA V6 Utilities Ref: System



PSBGEN

When the first ISRT call is issued using a PCB with PROCOPT=L, and the
database is using VSAM, the VSAM data set must be empty. If it is not empty,
an open error will result.

Recommendation:If the database is using OSAM, it is recommended that the
data set be a newly allocated empty data set.

If the data set is not empty, the load will start at the front of the data set, writing
over the existing data.

If the 'O" option is used for a PCB, the SENSEG statement must not specify a
PROCOPT of I, R, D, or A.

An online application program always has exclusive use of the SHSAM or
HSAM databases, which are referenced by PCBs in its PSB. No other
application programs can be concurrently scheduled to access those same
SHSAM or HSAM databases in an online environment.

If the Online Database Image Copy utility refers to this PCB, the value of
PROCOPT= L or LS is invalid. If the database to be copied is the index portion
of a HIDAM database, only PROCOPT=G and PROCOPT=GO are valid. If
PROCOPT=E is specified, the Online Image Copy utility will execute with
exclusive control of the database, even though the utility does not require the
control.

If the Database Surveyor utility feature refers to this PCB, you must specify
PROCOPT=G.

In the case of concatenated segments, the PROCOPT= operand governs the
logical child segment of the concatenated segment. The logical parent of the
concatenated segment is governed by the RULES= operand of the SEGM
statement.

PROCOPT=E only applies to the database specified in the PCB. To enable
exclusive use of a secondary index not explicitly used by the application, add
another PCB with PROCOPT=E for the secondary index database.

Use of PROCOPT=(with Fast Path)

In a non-terminal-related or fixed terminal-related MSDB, only the processing
options G and R are valid.

G
R

Get function.

Replace function. Includes G.

In a dynamic terminal-related MSDB, the processing options G, |, R, D, A or any
combination of G, I, R, and D are valid.

G
I

> O =X

Get function.

Insert function.

Replace function. Includes G.
Delete function. Includes G.

All. Includes above four functions.

In a DEDB, the processing options G, |, R, D, A, P, N, T, O, and H are valid.

G
I

Get function.
Insert function.
Replace function. Includes G.

Delete function. Includes G.

Chapter 2. Program Specification Block (PSB) Generation 119



PSBGEN

All, includes above four functions.

Position function. Is not required if command code D is used when
processing DEDBs. It is only valid for a batch message program (BMP). If
this option is specified for another type of region, such as an IFP region, it
will be ignored. With this option, a GC status code is returned when a UOW
boundary is crossed during a G(H)U, G(H)N, or ISRT on a root segment. Also,
database positioning is maintained across a valid SYNC call and a blank
status code is returned when the sync is issued immediately after receiving
a GC status code. In the case of a sync process failure or ROLB call,
position is set to the last valid sync point or, if no valid sync point exists, to
the start of the database. A SYNC or ROLB call without a preceding GC
status will also cause position to be set to the start of the database.

Related Reading: For more information on the P processing option or the

UOW for DEDBs, refer to IMS/ESA Administration Guide: Databasd

If you use the D command code in a call to a DEDB, the P processing
option need not be specified in the PCB for the program.

Reduces the number of abends that read-only application programs are
subject to. Read-only application programs can reference data being
updated by another application program. When this happens, invalid pointer
to the data might exist. If an invalid pointer is detected, the read-only
application program abends. By specifying N, you avoid this. A GG status
code is returned to the program, instead. The program can then terminate
processing, continue processing by reading a different segment, or access
the data using a different path. N must be specified as GON, GONH, or GONP.

Read only; do not enqueue to check availability. Selecting PROCOPT=GO0, GON,
or GOT for DEDBs indicates that read without integrity is in effect. No locking
mechanism is used to maintain the integrity of the retrieved data. O must

be specified as GO, GON, or GOT, and may not be used in conjunction with H.

A user abend (U1026) can occur with PROCOPT=GO if another program
updates pointers when this program is following the pointers. Another
example of the abend U1026 is if this program rereads a segment that has
moved when another program changes its length. The following examples
will help illustrate instances where abend U1026 could occur or old data is
retrieved.

Example 1: If one region uses both update and PROCOPT=GO PCBs to
update and read the same segment, the following scenario will not produce
a pointer error to the control blocks of the PROCOPT=GO PCB (MLTE).
Call the update PCB (PCBA), and the read PCB (PCBGO).

1. Region 1 PCBGO reads the Cl and sets the position of the segment in
MLTE. The data in the buffer is linked to EPSTGOBF.

2. Region 1 issues a call to update the segment. Region 1 PCBA steals
the buffer off its EPSTGOBF. Region 1 PCBA saves the old position and
updates the segment. Even if the segment is moved, Region 1 will
update the PCBGO MLTE because the position in the GO MLTE
matches the saved old position.

3. Region 1 PCBGO references the segment again and retrieves the
updated segment.

Example 2: When two regions update the same segment and use both
update and PROCOPT=GO PCBs, the following scenario will not produce a

120 IMS/ESA V6 Utilities Ref: System



PSBGEN

pointer error to the control blocks of the PROCOPT=GO PCB (MLTE), but
the PROCOPT=GO PCB will not have access to the updated segment from
the other region.

1. Region 1 PCBGO reads the Cl and sets the position of the segment in
MLTE. The buffer is linked to EPSTGOBF.

2. Region 2 PCBA reads the CI with lock and replaces the segment with a
length change. The position of the segment changes, resulting in an
FSE in the updated CI at the position set in Region 1 PCBGO MLTE.
Region 1 still has the old data in the buffer which is linked to
EPSTGOBF.

3. Region 1 PCBGO references the segment again and retrieves the old
segment because its buffer has not been updated by Region 2’'s
change.

Example 3: When two regions update the same segment and use both
update and PROCOPT=GO PCBs, the following scenario will not produce a
pointer error to the control blocks of the PROCOPT=GO PCB (MLTE), but
the PROCOPT=GO PCB will not have access to the updated segment from
its own region.

1. Region 1 PCBGO reads the Cl and sets the position of the segment in
MLTE. The buffer is linked to EPSTGOBF.

2. Region 2 PCBA reads the Cl with lock and replaces the segment with a
length change. The position of the segment changes, resulting in an
FSE in the updated CI at the position set in Region 1 PCBGO MLTE.
Region 1 still has the old data in the buffer which is linked to
EPSTGOBF.

3. Region 1 issues a call to update the segment. Region 1 waits for the
release of Region 2's lock. Because the updated segment is now on a
different block, Region 1 does not find the duplicate buffer on
EPSTGOBF and the old buffer is still linked to EPSTGOBF. Region 1
reads the update CI, which is now in its buffer. Region 1 PCBA updates
the segment in its place. Even if the segment is moved, Region 1 will
not update the PCBGO MLTE because the position in the MLTE no
longer matches the position of the segment. There are now two
duplicate buffers, one containing the old data that is linked to
EPSTGOBF, and another containing updated information that is linked
to EPSTXCOC.

4. Region 1 PCBGO references the segment and retrieves the old data.

Example 4: When two regions update the same segment and use both
update and PROCOPT=GO PCBs, the following scenario will produce a
pointer error to the control blocks of the PROCOPT=GO PCB (MLTE).

1. Region 1 PCBGO reads the Cl and sets the position of the segment in
MLTE. The buffer is linked to EPSTGOBF.

2. Region 2 PCBA reads the Cl with lock and replaces the segment with a
length change. The position of the segment changes within the same
block and creates an FSE in the updated CI at the position set in
Region 1 PCBGO MLTE. Region 1 still has the old data in the buffer
linked to EPSTGOBF.

3. Region 1 issues a call to update the segment. Region 1 waits for the
release of Region 2’s lock. Region 1 PCBA steals the buffer off
EPSTGOBF and reads the updated Cl, moving it to Region 1's buffer.
Region 1 PCBA updates the segment in its place. Even if the segment

Chapter 2. Program Specification Block (PSB) Generation 121



PSBGEN

is moved, Region 1 will not update the PCBGO MLTE because the
position in the MLTE no longer matches the position of the segment.

4. Region 1 PCBGO references the segment again and receives abend
U1026 since there is now an FSE where the segment had been
(MLTE’s position).

To reduce the number of abends of this type, code the PROCOPT=
operand withan N or a T.

T Works exactly like the N option. T must be specified as GOT, GOTH, or
GOTP.
H HSSP. Includes G and P.

A DLET or ISRT call to a terminal-related dynamic MSDB from a program with no
input LTERM present, for example, a batch-oriented BMP, will result in a status
code of AM, regardless of the processing options specified.

The Replace function also implies the Get function. If the referenced segment is a
root or direct dependent segment, A implies G, I, R, and D. Only processing options
of G, I, and GI are valid for sequential dependent segments.

The processing option of P is valid only when specified for a root segment to be
used by an IMS batch message program. If the processing option P is specified for
another type of region, such as an IFP region, it will be ignored. With this option, a
GC status code is returned when a UOW boundary is crossed during a G(H) U,
G(H)N, or ISRT on a root segment. Also, database positioning is maintained across a
valid SYNC call and a blank status code is returned when the sync is issued
immediately after receiving a GC status code. In the case of a sync process failure
or ROLB call, position is set to the last valid sync point or, if no valid sync point
exists, to the start of the database. A SYNC or ROLB call without a preceding GC
status will also cause position to be set to the start of the database.

Related Reading:For more information on the P processing option or the UOW for
DEDBs, refer to inistrati ide:

If you use the D command code in a call to a DEDB, the P processing option need
not be specified in the PCB for the program.

Procopt H may not be used in conjunction with O.

If you specify invalid processing options, the PSBGEN accepts them but the
Application Control Blocks Maintenance utility fails. The error does not appear in the
PSBGEN but appears in the ACBGEN.

SB=
Specifies which PCBs will be buffered using sequential buffering (SB). This is
an optional keyword. The default is SB=NO, unless the default option has been
modified for Batch and BMPs by the DFSSBUX0 to SB=COND.

Related Reading:For more information about DFSSBUXO, refer to imMs/ESA
e  ton Guidd.

COND Specifies that SB should be activated conditionally. IMS will monitor
statistics about the 1/O reference pattern of this PCB to the DB data set.
If IMS detects a sequential 1/O reference pattern and a reasonable
activity rate, it will activate SB and acquire the required buffers.

122 IMS/ESA V6 Utilities Ref: System



PSBGEN
NO Specifies that SB should not be used for this DB PCB.

Recommendation: For short-running MPPs, Fast Path programs, and CICS
programs, either omit the SB= keyword or specify SB=NO.

KEYLEN=
Is the value specified in bytes of the longest concatenated key for a hierarchic
path of sensitive segments that the application program uses in the logical data
structure. m illustrates the definition of KEYLEN.

Database Segment Name
Structure A
Key Field
Length 10
Segment Name Segment Name Segment Name
B R = I
Key Field Key Field Key Field
Length10 Length 250 Length 10
Segment Name Segment Name Segment Name
c o 8
Key Field Key Field Key Field
Length10 Length10 Length 40
SegmentName
,,,,,,,,,,,,, A
Key Field
Length 50
Database Concatenated ‘
Hierarchical Paths Key Length Path Segment Name
1 =A+B+C = 30 Bytes J
2 = A+B+D = 30 Bytes S
3 = A+E = 260 Bytes Key Field
4 = A+F+G+H+J = 120 Bytes Length 10

A Keylen = 260 would be specified
Figure 31. KEYLEN Definition

For a non-terminal-related MSDB without terminal-related keys, the value must be
greater than or equal to the value of the BYTES parameter of the sequence field in
the DBD generation and be from 1 to 240 bytes.

For a terminal-related MSDB (using the LTERM name as a key), this value must be
8.

POS=
Specifies single or multiple positioning for the logical data structure. Single or
multiple positioning provides a functional variation in the call.

Chapter 2. Program Specification Block (PSB) Generation 123



PSBGEN

Related Reading:This functional difference is documented in [MS/ESA

Bpplication Programming: EXEC DL Commands for CICS and IM3 and in
IMS/ESA Application Programming: Database Managet.

The performance variation between single and multiple positioning is
insignificant. HSAM does not support multiple positioning.

POS=SINGLE or S is the default.

Exception:For DEDBs having more than two dependent segments, the default
is POS=MULTPLE or M.

Coding a POS value on the PCB statement for a DEDB will not override the
default that is selected based on the number of dependent segments.

PROCSEQ=

Specifies the name of a secondary index that is used to process the database
named in the DBDNAME operand through a secondary processing sequence.
The operand is optional. It is valid only if a secondary index exists for this
database. If this operand is used, subsequent SENSEG statements must reflect
the secondary processing sequence hierarchy of segment types in the indexed
data base. For example, the first SENSEG statement must name the indexed
segment with a PARENT=0 operand.

index dbname must be the name of a secondary index DBD.

For a secondary processing sequence, processing options L and LS are invalid.
Inserting and deleting the index target segment and any of its inverted parents
are not allowed. When the blocks are built, if the processing option for these
segments includes | or D, a warning message indicates that the processing
option has been changed to reflect this restriction.

VIEW=MSDB

Is used to specify the MSDB commit view. Your existing applications can use
either MSDB commit view or the default DEDB commit view. To use the MSDB
commit view for DEDBSs, specify VIEW=MSDB on the PCB statement; if you do not
specify VIEW=MSDB, the DEDB will use the DEDB commit view. So no changes to
any existing application programs are required to migrate your MSDBs to
DEDBs.

For more information on the VIEW=MSDB operand see Application Programming:
Database Manager.

LIST=

Specifies whether the named PCB is included in the PCB list passed to the
application program at entry. Specify YES to include a named PCB in the PCB
list. Specify NO to exclude a named PCB from the PCB list. YES is the default.

To exclude a PCB from the PCB list, you must assign the PCB a name with
either the label or PCBNAME= parameter. You can specify LIST=NO if an
application program does not need a PCB’s address.

See pagem for information about naming PCBs on the DL/l database PCB
statement.

124 IMS/ESA V6 Utilities Ref: System



PSBGEN

GSAM PCB Statement

The following diagram shows the format for the GSAM database PCB statement.

»»—PCB—TYPE=GSAM, DBDNAME=name ,PROCOPT= G »>
NAME=name——|— L |—S—|
L

|:S:|

> >«

i:, PCBNAME=pcbname— J:YES
label ———MMM ,LIST=—-NO

TYPE=GSAM
Is a required keyword parameter for all GSAM database PCBs that will be
allocated and processed in the dependent region.

DBDNAME= or NAME=
Is a required keyword parameter for the name that specifies the GSAM DBD to
be used as the primary source of data set description. SENSEG statements
must not follow this PCB statement.

PROCOPT=
Is a required parameter for the processing options on the data set declared in
this PCB that can be used in an associated application program. Use the
following characters to specify the operand.

G Get function.

L Load function.

S Large-scale sequential activity. Use GSAM multiple-buffering option
(BUFFIO).

The GSAM PCB statement must follow the PCB statements with TYPE=TP or DB if
any exist in the PSB generation. The rule is:

TP PCBs First
DB PCBs Second
GSAM PCBs Last
PCBNAME=

Specifies the name of the PCB. The PCB name must be an alphanumeric,
8-byte character string that follows standard naming conventions. The PCB
name must be unique within the PSB.

Exception:Do not specify this parameter if the PCB statement includes label.

label
Specifies an 1- to 8-character alphanumeric label that is valid for an MVS
assembler language statement. The labels for the PCB statements within a PSB
must be unique.

Exception:Do not specify this parameter if PCBNAME= is used.

LIST=
Specifies whether the named PCB is included in the PCB list passed to the

Chapter 2. Program Specification Block (PSB) Generation 125



PSBGEN

application program at entry. Specify YES to include a named PCB in the PCB
list. Specify NO to exclude a named PCB from the PCB list. YES is the default.

To exclude a PCB from the PCB list, you must assign the PCB a name with the
PCBNAME-= parameter. You can specify LIST=NO if an application program
does not need a PCB’s address.

SENSEG Statement

You use the SENSEG statement with the database PCB statement to define a
hierarchically related set of data segments. This set represents segments to which
a program through this PCB is sensitive. This segment set can physically exist in
one database or can be derived from several physical databases. One or more
SENSEG statements can be included; each statement must immediately follow the
PCB statement to which it is related. There must be one SENSEG statement for
each segment to which the application program is sensitive. All segments in the
hierarchic path to any required segment must be specified. A maximum of 3000
SENSEG statements can be defined in a single PSB generation.

The order in which SENSEG statements are sequenced after a PCB statement
determines the logical access order for the segments. When using HSAM or HISAM
databases, the SENSEG statement sequence must follow the physical sequence of
the segments as defined in DBDGEN, unless the PROCSEQ parameter is used in
the PCB statement.

If the PROCSEQ parameter is used in the PCB statement, the SENSEG statement
sequence reflects the secondary processing sequence specified by the PROCSEQ
parameter. For HDAM or HIDAM databases, the SENSEG statements for segments
on the same level do not have to be in the same order as the DBD. The order of
dependent segments whose parent segment does not use hierarchic pointing can
differ from the physical sequence.

The format of the SENSEG statement is as follows:

[0 (1)
»»—SENSEG—NAME=name ,PARENT= name ,PROCOPT=

1
Le ) Lpd
D
L] Ll
LK
I
»—,SSPTR=— (—YX—(—n, |_u_| ) ) >

l—,INDICES=Zi5t1—|

Notes:

1 These can be selected in any combination; if G, I, R, and D are all chosen,
use Ainstead (A =G, I, R, and D combined).

126 IMS/ESA V6 Utilities Ref: System



PSBGEN

NAME=
Is the name of the segment type as defined through a SEGM statement during
DBD generation. The field is from 1- to 8-alphanumeric characters.

PARENT=
Is the segment type name of this segment’s parent.

Requirement:This operand is required for all dependent segments.

The field is either from 1- to 8-alphanumeric characters or 0. If this SENSEG
statement defines a root segment type as being sensitive, this operand must
equal zero. PARENT=0 is the default.

PROCOPT=
Indicates the processing options valid for use of this sensitive segment by an
associated application program. This operand has the same meaning as the
PROCOPT= operand on the PCB statement. In addition to the valid options for
this operand listed in E, an option can be used on the SENSEG statement
which does not apply to the PCB statement. A PROCOPT of K indicates key
sensitivity only. A GN call with no SSAs can access only data-sensitive
segments. If a key-sensitive segment is designated for retrieval in an SSA, the
segment is not moved to the user’s I/O area. The key is placed at the
appropriate offset in the key feedback area of the PCB. If this PROCOPT=
operand is not specified, the PCB PROCOPT operand is used as default. If
there is a difference in the processing options specified on the PCB and
SENSEG statements and the options are compatible, SENSEG PROCOPT
overrides the PCB PROCOPT. If PROCOPT= L or LS is specified on the
preceding PCB statement, this operand must be omitted.

Do not specify a SENSEG statement for a virtual logical child segment type if
PROCOPT= L or LS is specified. The Replace and Delete functions also imply
the Get function.

If a segment has PROCOPT=K specified, an unqualified Get Next call (GN)
skips to the next sensitive segment with a PROCOPT other than K.

The SENSEG PROCOPT overrides the PCB PROCOPT. If PROCOPT=E is
specified in the PCB, the SENSEG PROCOPT must also specify E if it is
intended to schedule exclusively for that SENSEG.

It is not valid to code the N or T processing option in the SENSEG statement.
You can code them only in the PCB statement.

The processing option for a DEDB sequential dependent segment must be
either G or I. If one of these values is not specified on the PCB statement,
PROCOPT=G or | must be specified on the SENSEG statement.

In the case of concatenated segments, the PROCOPT= operand governs the
logical child segment of the concatenated segment. The logical parent of the
concatenated segment is governed by the RULES= operand of the SEGM
statement.

SSPTR=
Specifies the subset pointer number and the sensitivity for the pointer. Up to 8
subset pointers can be defined. The subset pointer number (the first operand)
must be 1 through 8. The sensitivity for the pointer (the second operand) must
be R (read sensitive) or U (update). If the first operand and the second operand

Chapter 2. Program Specification Block (PSB) Generation 127



PSBGEN

are not specified, the pointer has no sensitivity. If only n is specified, the pointer
is read sensitive. SSPTR=R is the default.

You cannot use U (update sensitivity) if the PCB statement specifies GO.

INDICES=
Specifies which secondary indexes contain search fields that are used to qualify
SSAs for an indexed segment type. The INDICES= operand can be specified
for indexed segment types only. It enables SSAs of calls for the indexed
segment type to be qualified on the search field of the index segment type
contained in each secondary index specified.

Restriction:An SSA of a call for an indexed segment type cannot be qualified
on the search field of a secondary index unless that secondary index was
specified in the INDICES= operand of the SENSEG statement for the indexed
segment type or in the PROCSEQ= operand of the PCB statement.

For listl, you can specify up to 32 DBD names of secondary indexes. If two or
more names are specified, these names must be separated by commas and the
list enclosed in parentheses.

m shows the data structure of segment definition.

Do not specify INDICES= on a SENSEG statement if you specified PROCOPT=L,
LS, I, or D on the preceding PCB statement.

}

E F

Figure 32. Data Structure of Segment Definition

All of the above segments are defined within one DBD.

The complete PCB and SENSEG statements for the data structure might be written
as follows:

Col. 10 Col. 16 Col. 72.
PCB TYPE=DB,DBDNAME=DATABASE, X
PROCOPT=A,KEYLEN=22

SENSEG NAME=A, PARENT=0,PROCOPT=G

SENSEG NAME=B, PARENT=A,PROCOPT=G

SENSEG NAME=C,PARENT=B,PROCOPT=1

SENSEG NAME=D, PARENT=A, PROCOPT=A

SENSEG NAME=E, PARENT=D, PROCOPT=G

SENSEG NAME=F,PARENT=D, PROCOPT=A

SENFLD Statement

128

The SENFLD statement is used with the SENSEG statement to indicate those fields
within a segment to which an application program is sensitive. One or more
SENFLD statements can be included. Each statement must follow the SENSEG
statement to which it is related. You can define a maximum of 255 SENFLD

IMS/ESA V6 Utilities Ref: System



PSBGEN

statements for a given SENSEG statement. You can define a maximum of 10,000
SENFLD statements in a single PSB generation.

The same field can be referenced in more than one SENFLD statement within a
SENSEG. If the duplicate field hames participate in a concatenated segment and
the same field name appears in both portions of the concatenation, the first
reference will be to the logical child, and all subsequent references will be to the
logical parent. This referencing sequence determines the order in which fields will
be moved to the user’s I/O area.

For retrieve-only processing you can request, via the SENFLD statement, that the
same data be moved to multiple locations in your I/O area, provided that no
overlapping occurs, and that SENFLDs of variable-length segments are of the same

type.

The following restrictions apply to the SENFLD statement:

* The length field of a variable-length segment cannot be referenced through a
SENFLD statement.

* A SENFLD statement cannot appear within a SENSEG with PROCOPT=K.

* A SENFLD statement cannot not appear within a SENSEG with PROCOPT=I or
L, if the SENSEG refers to a logical child segment.

» If SENFLD statements are used within a SENSEG with PROCOPT=l or L, a
SENFLD statement must be included for the segment sequence field, if it exists.

* This statement is not supported for MSDB and DEDB.

The format of the SENFLD statement is as follows:

»»—SENFLD—NAME=name ,START=startpos L‘ »><
=

YES—|
»REPLACE= |_ I
s REPL=J I—NO—|

NAME=
Is the name of this field as defined through a FIELD statement during DBD
generation. The field is from 1- to 8-alphanumeric characters.

START=
Specifies the starting position of this field relative to the beginning of the
segment within the user’s 1/O area. startpos for the first byte of a segment is 1.
startpos must be a decimal number whose value does not exceed 32767.

REPLACE= or REPL=
Specifies whether or not this field can be altered on a replace call. You can
specify NO or N. If omitted, REPLACE=YES (or Y) is the default.

PSBGEN Statement

The PSBGEN statement specifies characteristics of the application program. fi2d
shows the format for the PSBGEN statement.

Chapter 2. Program Specification Block (PSB) Generation 129



PSBGEN

»>—PSBGEN—PSBNAME=name

\/

L —LANG=—COBOL L 0
PL/I ,MAXQ=£nr_—|—

ASSEM
PASCAL
blank
L_ NO l——,IOASIZE=value—-| l——,SSASIZE=value—-|
,CMPAT=——YES

Y

».

L, roeroPN=—n | NO L NO
|—(”,WTOR)—l ,OLIC=£YES_| GSROLBOK=£YES

0]
=l

PSBNAME=

Specifies the parameter keyword for the alphanumeric name of this PSB. The
PSBNAME name must be an alphanumeric, 8-byte character string that follows
standard naming conventions. This name becomes the load module name for
the PSB in the library IMS.PSBLIB. If the program is to run in a message
processing region, this name must be the same as the program load module
name in the program library called IMS.PGMLIB No special characters can be
used in the name.

Do not give a DBD the same name as an existing PSB. Using an existing name
can cause unpredictable results: an error will occur at ACBGEN time.

LANG=

An optional keyword that indicates the compiler language in which the message
processing or batch processing program is written. The value for this parameter
must be COBOL, PL/I, ASSEM, PASCAL, or blank. Leave the value blank if the
application has been enabled for the IBM Language Environment for MVS &
VM. If you specify OLIC=YES, LANG=PL/I is invalid. If your application program
is written in C language, specify LANG=ASSEM.

CICS and the IBM Language Environment for MVS & VM do not support
PASCAL.

If you are using IMS PL/I applications that run in a compatibility mode using the
PLICALLA entry point, you must specify LANG=PLI on the PSBGEN. If you
change the entry point and add SYSTEM(IMS) to the EXEC PARM of the
compile step, you can specify LANG=blank or LANG=PLI on the PSBGEN. The
following table shows when to use LANG=blank and LANG=PLI.

Table 8. Using LANG= Option in an LE/370 Environment for PL/I Compatibility

Compile exec statement is and entry point Then LANG= is as
PARM=(...,SYSTEM(IMS)... name is PLICALLA  stated below:
Yes Yes LANG=PLI

130 IMS/ESA V6 Utilities Ref: System



PSBGEN

Table 8. Using LANG= Option in an LE/370 Environment for PL/I Compatibility (continued)

Compile exec statement is and entry point Then LANG=is as

PARM=(...,SYSTEM(IMS)... name is PLICALLA  stated below:

Yes No LANG=blank or
LANG=PLI

No No Note: Not valid for
IMS PL/I applications

No Yes LANG=PLI

PLICALLA is only valid for PL/I compatibility support in an LE/370 environment.
If a PL/I application using PLICALLA entry at link-edit time is link-edited using
LE/370 with the PLICALLA entry, the link-edit will work;however, you must use
LANG=PLI. If the application is re-compiled using PL/l| MVS & VM Version 1
Release 1, and link-edited using LE/370 Version 1 Release 2, the link-edit will
fail. You must remove the PLICALLA entry statement from the link-edit.

MAXQ=
Is the maximum number of database calls with Qx command codes that can be
issued between synchronization points. If this number is exceeded, the
application program will abend. The default value is zero.

CMPAT=
Provides compatibility between BMP or MSG and Batch-DL/I parameter lists. If
CMPAT=YES, the PSB is always treated as if there were an I/O PCB, no matter
how it is used. If CMPAT=NO, the PSB has an 1/O PCB added only for BMP or
MSG regions. The default is NO.

IOASIZE=
Specifies the size of the largest I/O area used by the application program. The
size specification is used to determine the amount of main storage reserved in
the PSB pool to hold the control region’s copy of the user’s I/0O area data during
scheduling of this application program. If you do not specify this value, the ACB
utility program calculates a maximum I/O area size and uses it as a default. The
size calculated is the total length of all sensitive segments in the longest
possible path call. (The total length of the segment must be used, even if the
application program is not sensitive to all fields in a segment.) The value
specified is in bytes, with a maximum of 256000. However, the combined length
of all concatenated segments to be returned to the application on a single path
call must not exceed 65535 bytes.

If the PSB contains any field sensitive segments, and IOASIZE is specified, the
specified value is used only if it is larger than the OASIZE calculated by the
ACBGEN utility. The value of the IOASIZE that will be used is indicated in
message DFS0593I issued by ACBGEN. The major components of this pool
requirement are IOASIZE and SSASIZE. When the PSB is built into ACBLIB,
ACBGEN message DFS0589I indicates the PSB's total work pool space
requirement.

If STAT calls or the test program (DFSDDLTO) is used with this PSB, IOASIZE
must be greater than 600 bytes.

If CMD or GCMD calls (from automated operator interface application
programs) are used with this PSB, IOASIZE must be at least 132 bytes.

Chapter 2. Program Specification Block (PSB) Generation 131



PSBGEN

If extended checkpoint/restart is used, IOASIZE must be set to a value equal to

or greater than the larger of the following:

* 1/O area needed to receive data from a GU call issued during restart, while
repositioning DL/l databases that were checkpointed (if this PSB contains
any).

* Largest LRECL used in a GSAM data set that is checkpointed.

Either the value pointed to by the third parameter (I/O AREA LEN) of the XRST
CALL or the value of this parameter will be used, depending on which value is
larger.

SSASIZE=

Specifies the maximum total length of all SSAs used by the application
program. IMS uses the size specification to determine the amount of main
storage reserved in the PSB work pool to hold a copy of the user's SSA strings
during execution of this application program. If you do not specify this value, the
ACB utility program calculates a maximum SSA size to be used as a default.
The size calculated is the maximum number of levels in any PCB within this
PSB multiplied by 280. The value specified is in bytes, with a maximum of
256000.

Restriction: When you run IMS under CICS without DBCTL, the PSB work
pool requirement cannot exceed 64KB.

The major components of this pool requirement are IOASIZE and SSASIZE.
When the PSB is built into ACBLIB, ACBGEN message DFS0589I indicates the
PSB'’s total work pool space requirement.

IOEROPN=

Is applicable only in batch-type regions (DLI or DBB). This parameter is not
valid for CICS. The n subparameter is the condition code returned to the
operating system when IMS terminates normally and one or more input or
output errors occurred on any database during the application program
execution. The n subparameter is a number from 0 to 4095.

If n=451, IMS terminates with a U451 abend instead of passing a condition
code to the operating system. If n=451 and the IMS or the application program
abends with an abend other than U451, and an I/O error has also occurred, a
write-to-programmer of message DFS0426l is issued. This message indicates
that an 1/O error has occurred during execution and that a U451 abend has
occurred if the actual abend has not.

If you specify the WTOR subparameter, a WTOR for the DFS0451A 1/O error
message is issued, and DL/I waits for the operator to respond before
continuing. If you respond ABEND, IMS terminates with a U451 abend. If you
respond CONT IMS continues. Any other response causes the DFS0451A
message to be reissued.

If n=451, IMS terminates with abend U0451, even if the operator responds
“CONT” to the DFS0451A message.

By using the IOEROPN parameter, you can set a unigue JCL condition code
when an 1/O error occurs and test the condition code in subsequent job steps. If
you do not specify this parameter, the return code passed from the application
program is passed to the operating system and status codes and console
messages are the only indications of database I/O errors.

132 IMS/ESA V6 Utilities Ref: System



PSBGEN

If you code the WTOR subparameter, you must code the n subparameter and
parentheses are required. If you code only IOEROPN=n, parentheses are not
required.

oLIC=
Indicates whether the user of this PSB is authorized to execute the Online
Database Image Copy utility or the Surveyor utility feature that runs as a BMP
against a database named in this PSB. YES allows the Online Image Copy and
the Surveyor utility feature; NO prohibits the Online Image Copy and the
Surveyor utility feature. NO is the default. This operand is invalid if any DBPCB
(TYPE=DB) specifies PROCOPT=L or LS.

Exception:This operand is not applicable to CICS/MVS GSAM, HSAM, MSDB,
or DEDB databases.

GSROLBOK=
Controls whether an internal ROLB call should be done to roll back non-GSAM
database updates when:

* The application is a non-message-driven BMP.
* The PSB contains a GSAM PCB.
* DB2 reports a deadlock either on a thread create or on an SQL call.

YES means that the internal ROLB call should be done and that the SQL code
regarding the deadlock should be returned to the application program. NO
means that the internal ROLB call should not be done and that a user abend
777 should occur. If the GSROLBOK parameter is omitted, the default is NO.

LOCKMAX=
Indicates the maximum number of locks an application program can get at one
time. n is a numeric value between 0 and 255. n is specified in units of 1000.
For example, a specification of LOCKMAX=5 indicates a maximum of 5000
locks at one time.

The default value is 0. This indicates that there is no maximum number of locks
that are allowed at one time.

If an application program runs for an extended time without committing, the
locking done by IMS of database records and changes can accumulate. You
can use the LOCKMAX parameter to prevent a single application program from
consuming all locking storage and thereby causing other programs to abend.

You can override the LOCKMAX value specified on the PSBGEN statement at
program execution by specifying LOCKMAX=0 (to turn off limit completely) or
by specifying LOCKMAX=1 to 32767 on the dependent region (BMP, MPP, or
IFP) or Batch (DBB or DLI). The value is in units of 1000. You can use this
method to exceed the maximum value of 255 that can be specified on the
PSBGEN statement LOCKMAX parameter.

There can be several PCB statements for message output and several PCB
statements for databases, but only one PSBGEN statement in a PSB generation
statement deck. The PSBGEN statement must be the last statement in the deck
preceding the END statement.

Chapter 2. Program Specification Block (PSB) Generation 133



PSBGEN
END Statement

All PSB generation utility control statements must be followed by an END
statement.

Requirement: The END statement is required by the macro assembler to indicate
the end of the assembly data.

Output Messages and Statistics

PSB generation produces three types of printed output and one load module, which
becomes a member of the partitioned data set, IMS.PSBLIB. The types of output
are:

Control Statement Listing
This is a listing of the input statement images to this job step.

Diagnostics
Errors discovered during the processing of each control statement result in
diagnostic messages being printed immediately following the image of the last
control statement read before the error was discovered. The message can
either refer to the control statement immediately preceding it or the preceding
group of control statements. It is also possible for more than one message to
be printed for each control statement. In this case, they follow each other on the
output listing. After all the control statements have been read, a further check is
made of the logic of the entire deck. This can result in one or more additional
diagnostic messages.

If an error is discovered, a diagnostic message is printed, the control
statements are listed, and the other outputs are suppressed. However, all the
control statements are read and checked before the PSB generation execution
is terminated. The link-edit step of PSB generation is not executed if a control
statement error has been found.

Assembler Listing
Except when PRINT NOGEN is specified, an operating system assembler
language listing of the PSB created by PSB generation execution is provided.

Load Module
PSB generation is a two-step operating system job. Step 1 is a macro assembly
execution that produces an object module. Step 2 is a link-edit of the object
module, which produces a load module that becomes a member of
IMS.PSBLIB.

PSB Generation Error Conditions
See IMS/ESA Messages and Caded for a complete description of the IMS
messages that indicate PSB errors.

Examples
This section includes examples of the use of the PSBGEN utility.

PSB Generation Examples

This example shows a PSB generation for a message processing program to
process the hierarchic data structure shown in Ei

134 IMS/ESA V6 Utilities Ref: System



PSBGEN

PARTMAST
CPWS POLN f OPERTON T
INVSTAT OPERSGMT

Figure 33. Sample Hierarchic Data Structure

Example 1
This example shows output messages that are to be transmitted to logical terminals

OUTPUT1 and OUTPUT2 as well as the terminal representing the source of input.

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=TP,NAME=0UTPUT1,PCBNAME=0UTPCB1
PCB TYPE=TP,NAME=0UTPUTZ2,PCBNAME=0UTPCB2
PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100
SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A
SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A
SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A
SENSEG NAME=OPERTON,PARENT=PARTMAST,PROCOPT=A
SENSEG NAME=INVSTAT,PARENT=0PERTON,PROCOPT=A
SENSEG NAME=0PERSGMT,PARENT=0PERTON
PSBGEN LANG=COBOL,PSBNAME=APPLPGM1
END

/*

Example 2
This example shows these statements being used for a batch program, where

programs using this PSB do not reference the telecommunications PCBs in the
batch environment.

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM2
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100
SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A
SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A
SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A
SENSEG NAME=OPERTON,PARENT=PARTMAST,PROCOPT=A
SENSEG NAME=INVSTAT,PARENT=0PERTON,PROCOPT=A
SENSEG NAME=0PERSGMT,PARENT=0PERTON
PSBGEN LANG=COBOL,PSBNAME=APPLPGM2
END
/*

Example 3

This example shows that a PSB generation is being performed for a batch message
processing program. The GSAM PCB is used by the application program to
generate a report file.

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM3
//C.SYSIN DD =

PCB TYPE=TP,NAME=0UTPUT1

PCB TYPE=TP,NAME=0UTPUT2

PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100
SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A

SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A

Chapter 2. Program Specification Block (PSB) Generation 135



PSBGEN

PCB TYPE=GSAM, DBDNAME=REPORT,PROCOPT=LS
PSBGEN LANG=COBOL,PSBNAME=APPLPGM3
END

/*

Example 4
This example shows that a PSB generation is being performed for a batch program.

The PCB has been named (PRTMASTR). The PCB name is used on DLI calls that
use the AIBTDLI interface.

//PSBGEN  JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM4
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,KEYLEN=100,PCBNAME=PARTMSTR
SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A

SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A

SENSEG NAME=POLN,PARENT=PARTMAST,PROCOPT=A

SENSEG NAME=OPERTON,PARENT=PARTMAST,PROCOPT=A

SENSEG NAME=INVSTAT,PARENT=0PERTON,PROCOPT=A

SENSEG NAME=OPERSGMT,PARENT=0PERTON

PSBGEN LANG=COBOL,PSBNAME=APPLPGM4

END
/*

Example 5

This example shows that a PSB generation is being performed for a batch program.
A label (PARTROOQT) is being used to indicate the only root segment in the PCB.
The PCB’s address will be excluded from the PCB list that is passed to the
application at entry.

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM5
//C.SYSIN DD =

PARTROOT PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=A,LIST=NO
SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A

PSBGEN LANG=COBOL,PSBNAME=APPLPGM5

END
/*

Field Level Sensitivity PSB Generation Example

Eigure 34 on page 137 shows a PCB for a batch program using field level

sensitivity.

136 IMS/ESA V6 Utilities Ref: System



PSBGEN

EMPLOYEE
OFFICE EMPLPROJ PROJECT
SEGMENT NAME FIELD NAME START LOCATION LENGTH
EMPLOYEE EMPSSN 1 9
EMPLNAME 10 10
EMPFNAME 20 9
EMPMI 29 1
EMPADDR 30 30
OFFICE OFNUMBER 1 5
OFPHONE 6 7
EMPLPROJ EPFUNCTN 1 20
EPTIMEST 21 5
EPTIMCUR 26 5
PROJECT PROJNUM 1 8
PROJTTLE 9 20
PROJSTRT 29 8
PROJEND 37 8
PROJSTAT 45 1
//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =
PCB TYPE=DB,NAME=FISDBD1,PROCOPT=GRP,KEYLEN=20

SENSEG NAME=EMPLOYEE ,PARENT=0
SENFLD  NAME=EMPLNAME,START=13,REPL=NO
SENFLD  NAME=EMPFNAME,START=1,REPL=NO
SENFLD  NAME=EMPMI,START=11
SENSEG NAME=OFFICE,PARENT=EMPLOYEE
SENSEG NAME=EMPLPROJ, PARENT=EMPLOYEE
SENFLD  NAME=PROJNUM,START=1
SENFLD  NAME=PROJTITLE,START=10
SENFLD ~ NAME=EPFUNCTN,START=35
SENFLD  NAME=EPTIMEST,START=60
SENFLD ~ NAME=EPTIMCUR,START =70
PSBGEN LANG=ASSEM, PSBNAME=FISPCB1
END

/*

Figure 34. Sample Field Level Sensitivity PSB Generation

Fast Path PSB Generation Examples

This example shows a sample Fast Path PSB Generation.

Chapter 2. Program Specification Block (PSB) Generation 137



PSBGEN

Example 1
This example shows the statements for an MSDB PSB containing eight PCBs.

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=MSDBLMO1,PROCOPT=R, NONTERMINAL-RELATED X

KEYLEN=4 END OF PCB STATEMENT
SENSEG NAME=LDM, PARENT=0 (DEFAULT)
PCB TYPE=DB,DBDNAME=MSDBLM02,PROCOPT=R, NONTERMINAL-RELATED X
KEYLEN=1

SENSEG NAME=LDM, PARENT=0

PCB TYPE=DB,DBDNAME=MSDBLMO3,PROCOPT=R, NONTERMINAL-RELATED X
KEYLEN=2

SENSEG NAME=LDM, PARENT=0

PCB TYPE=DB,DBDNAME=MSDBLM04,PROCOPT=R, NONTERMINAL-RELATED X

KEYLEN=8 TERM KEYS

SENSEG NAME=LDM, PARENT=0

PCB  TYPE=DB,DBDNAME=MSDBLMO5, PROCOPT=R, FIXED RELATED X
KEYLEN=8

SENSEG NAME=LDM, PARENT=0

PCB  TYPE=DB,DBDNAME=MSDBLMO6, PROCOPT=A, DYNAMIC RELATED X
KEYLEN=8

SENSEG NAME=LDM, PARENT=0

PCB  TYPE=DB,DBDNAME=MSDBLMO6,PROCOPT=R, DYNAMIC RELATED X
KEYLEN=8

SENSEG NAME=LDM, PARENT=0

PCB  TYPE=DB,DBDNAME=MSDBLMO6,PROCOPT=G, DYNAMIC RELATED X
KEYLEN=8

SENSEG NAME=LDM, PARENT=0

PSBGEN LANG=ASSEM,PSBNAME=DDLTMO1 END OF PSBGEN MACRO

END  END OF PSB GEN

/*

Example 2

This example shows the statements for DEDB subset pointers.

//PSBGEN  JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB  TYPE=DB,DBDNAME=MSDBLMO1,PROCOPT=R, NONTERMINAL-RELATED X
PCB TYPE=DB,DBDNAME=X,PROCOPT=A,KEYLEN=100

SENSEG NAME=A,PARENT=C

SENSEG NAME=B,PARENT=A,SSPTR=((1,R),(2,U),(5))

SENSEG NAME=C,PARENT=B

SENSEG NAME=D,PARENT=A,SSPTR=((2,R))

PSBGEN LANG=COBOL,PSBNAME=APP101

END
/%
Notes:
1. SSPTR=((n,r))
n Subset pointer number in this SENSEG
r Sensitivity for the pointer (R: read, U: update)

2. If n and r are not specified, the pointer has no sensitivity.
3. If nis specified but r is not specified, the default is R (read sensitive).

138 IMS/ESA V6 Utilities Ref: System



PSBGEN

Additional PSB Generation Examples

Example 1
SKILL
NAME NAME
(PAYROLL) (SKILL)
ADDRESS PAYROLL EXPR EDUC

//PSBGEN ~ JOB MSGLEVEL=1
/1 EXEC  PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =
PCB TYPE=DB,DBDNAME=LOGIC1;PROCOPT=6,KEYLEN=151,P0S=M
SENSEG NAME=SKILL,PARENT=0,PROCOPT=A
SENSEG NAME=NAME , PARENT=SKILL, PROCOPT=A
SENSEG NAME=ADDRESS , PARENT=NAME , PROCOPT=A
SENSEG NAME=PAYROLL , PARENT=NAME , PROCOPT=A
SENSEG NAME=EXPR, PARENT=NAME , PROCOPT=A
SENSEG NAME=EDUC , PARENT=NAME , PROCOPT=A
PSBGEN LANG=COBOL , PSBNAME=PGMX
END
/*

Chapter 2. Program Specification Block (PSB) Generation 139



PSBGEN

Example 2
NAME
NAMESK
NAMESKIL SKILL ADDRESS PAYROLL
EXPR EDUC

//PSBGEN ~ JOB MSGLEVEL=1

// EXEC  PSBGEN,MBR=APPLPGM1

//C.SYSIN DD =

PCB TYPE=DB, DBDNAME=LOGICDB, PROCOPT=A,KEYLEN=241, P0S=M
SENSEG NAME=NAME , PARENT=0, PROCOPT=G
SENSEG NAME=NAMESK, PARENT=NAME , PROCOPT=G
SENSEG NAME=EXPR, PARENT=NAMESK, PROCOPT=G
SENSEG NAME=EDUC , PARENT=NAMESK , PROCOPT=G
SENSEG NAME=ADDRESS , PARENT=NAME , PROCOPT=G
SENSEG NAME=PAYROLL , PARENT=NAME , PROCOPT=G

PSBGEN LANG=PL/1,PSBNAME=PGMY

END

/*

140 IMS/ESA V6 Utilities Ref: System



PSBGEN
Example 3

PARTMAST

CPWS POLN INVSTAT OPERSGMT

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=TP,LTERM=0UTPUT

PCB TYPE=DB,DBDNAME=PARTMSTR,PROCOPT=GIDR,KEYLEN=100
SENSEG NAME=PARTMAST,PARENT=0,PROCOPT=A

SENSEG NAME=CPWS,PARENT=PARTMAST,PROCOPT=A

SENSEG NAME=POLN, PARENT=PARTMAST,PROCOPT=A

SENSEG NAME=INVSTAT,PARENT=PARTMAST,PROCOPT=A

SENSEG NAME=0OPERSGMT, PARENT=PARTMAST

PSBGEN LANG=COBOL , PSBNAME=APPLPGM1

END

/*

Example 4

POMSTR

POLNITEM

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=TP,NAME=0UT1
PCB TYPE=TP,NAME=0UT2
PCB TYPE=DB,DBDNAME=PODB, PROCOPT=GID,KEYLEN=200

SENSEG NAME=POMSTR

SENSEG NAME=POLNITEM,PARENT=POMSTR
PSBGEN LANG=COBOL , PSBNAME=APPLPGM3
END

/*

Examples of a Sample Problem with an Application Database
The following examples of the sample problem use DBDNAME=DI21PART.

Chapter 2. Program Specification Block (PSB) Generation 141



PSBGEN

Example 5

PARTROOT

STANINFO STOKSTAT

CYCCOUNT BACKORDR

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

SENSEG NAME=BACKORDR , PARENT=STOKSTAT
PSBGEN LANG=COBOL , PSBNAME=DFSSAMO1
END
/*
Example 6
PARTROOT
\ o \
p STANINFO ///l STOKSTAT
CYCGOUNT BACKORDR

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=19
SENSEG NAME=PARTROOT
SENSEG NAME=STANINFO,PARENT=PARTROOT
PSBGEN LANG=COBOL ,PSBNAME=DFSSAM02
END
/*

142 IMS/ESA V6 Utilities Ref: System



PSBGEN
Example 7

PARTROOT

STANINFO STOKSTAT

CYCCOUNT BACKORDR

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=43
SENSEG NAME=PARTROOT

SENSEG NAME=STANINFO, PARENT=PARTROOT

SENSEG NAME=STOKSTAT, PARENT=PARTROOT

SENSEG NAME=CYCCOUNT, PARENT=STOKSTAT

SENSEG NAME=BACKORDR, PARENT=STOKSTAT

PSBGEN LANG=COBOL , PSBNAME=DFSSAM0O3

END
/*
Example 8
PARTROOT
I |
STANINFO STOKSTAT .
CYCCOUNT BACKORDR

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=TP,LTERM=HOWARD

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=A,KEYLEN=33
SENSEG NAME=PARTROOT

SENSEG NAME=STOKSTAT,PARENT=PARTROOT

PSBGEN LANG=COBOL , PSBNAME=DFSSAM0O5

END

/*

Chapter 2. Program Specification Block (PSB) Generation 143



PSBGEN

Example 9

PARTROOT

STANINFO STOKSTAT

CYCCOUNT BACKORDR

//PSBGEN  JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=TP, LTERM=HOWARD

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=A,KEYLEN=33
SENSEG NAME=PARTROOT

SENSEG NAME=STOKSTAT, PARENT=PARTROOT

PSBGEN LANG=COBOL , PSBNAME=DFSSAM0O6

END
/*
Example 10
PARTROOT
\ |
STANINFO STOKSTAT
CYCCOUNT BACKORDR

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=DI21PART,PROCOPT=G,KEYLEN=43
SENSEG NAME=PARTROOT

SENSEG NAME=STANINFO,PARENT=PARTROOT

SENSEG NAME=STOKSTAT,PARENT=PARTROOT

SENSEG NAME=CYCCOUNT, PARENT=STOKSTAT

SENSEG NAME=BACKORDR, PARENT=STOKSTAT

PSBGEN LANG=COBOL , PSBNAME=DFSSAM07

END

/*

144 |MS/ESA V6 Utilities Ref: System



PSBGEN
Example of a Shared Secondary Index

Example 11
The database structure for this example is shown below:
DBDNAME=DTA3 DBDNAME=X4
DA | EGEE
X5
v
‘ X6
DB DC
DD DE

The database structure for index through DA is shown below:

PSBNAME=PDTA3A

DA

DB DC

DD DE

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X4
SENSEG NAME=DA, PARENT=0

SENSEG NAME=DB, PARENT=DA

SENSEG NAME=DC,PARENT=DA, INDICES=X5

SENSEG NAME=DD, PARENT=DC

SENSEG NAME=DE,PARENT=DC, INDICES=X6

PSBGEN LANG=COBOL ,PSBNAME=PDTA3A

END

/*

The database structure for index through DC is shown below:

Chapter 2. Program Specification Block (PSB) Generation 145



PSBGEN

PSBNAME=PDTA3B

DC

DA DD DE

//PSBGEN  JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X5
SENSEG NAME=DC, PARENT=0

SENSEG NAME=DA,PARENT=DC, INDICES=X4

SENSEG NAME=DD, PARENT=DC

SENSEG NAME=DE, PARENT=DC, INDICES=X6

PSBGEN LANG=COBOL ,PSBNAME=PDTA3B

END

/*

This database structure can also include, as a substructure, the database structure
for index through DA.

The database structure for index through DE is shown below:

PSBNAME=PDTA3B

DE

DC

DA

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=DTA3,PROCOPT=A,KEYLEN=15,PROCSEQ=X6
SENSEG NAME=DE, PARENT=0

SENSEG NAME=DC, PARENT=DE, INDICES=X5

SENSEG NAME=DA, PARENT=DC, INDICES=X4

PSBGEN LANG=COBOL , PSBNAME=PDTA3C

END

/*

This database structure can also include, as substructures, the database structures
for indexes through DA and DC.

146 IMS/ESA V6 Utilities Ref: System



PSBGEN

The PCB for INDEX database is shown below:

//PSBGEN ~ JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD =

PCB TYPE=DB,DBDNAME=X4,PROCOPT=A,KEYLEN=5
SENSEG NAME=X4A,PARENT=0
PCB TYPE=DB,DBDNAME=X5,PROCOPT=A,KEYLEN=5
SENSEG NAME=X5A, PARENT=0
PCB TYPE=DB,DBDNAME=X6,PROCOPT=A,KEYLEN=5

SENSEG NAME=X6A, PARENT=0
PSBGEN LANG=COBOL ,PSBNAME=PX4
END

/*

Chapter 2. Program Specification Block (PSB) Generation 147



PSBGEN

148 IMS/ESA V6 Utilities Ref: System



Chapter 3. Application Control Blocks Maintenance Utility

When an application program is scheduled for execution, IMS must first have
available database descriptor (DBD) and PSB control blocks previously created by
the DBDGEN and PSBGEN procedures.

Related Reading: For a description of the DBDGEN procedure, refer to IMS/ESA

Utilities Reference: Database Managed.

These control blocks must then be merged and expanded into an IMS internal
format called application control blocks (ACBs). The merge and expansion process
is called block building.

The Application Control Blocks Maintenance utility saves instruction execution and
direct-access wait time and improves performance in application scheduling. It
provides a facility for prebuilding the required application control blocks off-line;
hence, when the application is scheduled, its application control blocks can be read
in directly, and control can be passed promptly to the application program.

Application control blocks required for the DB/DC environment must be prebuilt,
except for application programs that use a GPSB. It is optional for the batch
environment. Using IMS.ACBLIB in a batch environment requires less virtual
storage than building the ACBs dynamically from PSBLIB and DBDLIB.

The Application Control Blocks Maintenance utility maintains the prebuilt blocks
(ACB) library (IMS.ACBLIB). The ACB library is a consolidated library of program
(PSB) and database (DBD) descriptions. Through control statements, you can direct
the maintenance utility to build all control blocks for all PSBs, for a specific PSB, or
for all PSBs that reference a specific DBD. This utility does not change the PSB in
IMS.PSBLIB or the DBD in IMS.DBDLIB. If changes are made in either PSBs or
DBDs that require changes in the associated PSB or DBD, you must make these
changes before running the utility. You can make additions, changes, and deletions
to IMS.ACBLIB without stopping IMS, by using the Online Change utility and
commands.

Related Reading:For more information on using the Online Change utility, see

mammﬂmmmﬁsw " N

Changes in PSBs might also require modifications to the affected application
programs. For example, if a DBD has a segment name changed, all PSBs which
are sensitive to that segment must have their SENSEG statements changed.

Application programs which use this database might also need to be modified.

In this Chapter:

© Copyright IBM Corp. 1974, 2000 149



ACBGEN

Restrictions

You do not need to run ACBGEN if your application program requires only an 1/0O
PCB and one modifiable alternate PCB. Such applications, typically used in a
DCCTL environment, can use GPSBs to define the resources necessary for
execution.

You cannot predefine GSAM PSBs and DBDs using ACBGEN because the control
blocks for GSAM are different from the standard IMS data set control blocks. PSBs
that reference GSAM, as well as hon-GSAM databases, can be predefined using
ACBGEN to build the control block for the non-GSAM databases.

IMS conforms to MVS rules for data set authorization. If an IMS job step is
authorized, all libraries used in that job step must be authorized. To run an IMS
batch region as unauthorized, a nonauthorized library must be concatenated to
IMS.RESLIB.

The Application Control Blocks Maintenance utility uses some IMS system
resources but not the total system. IMS.PSBLIB and IMS.DBDLIB are shared data
sets. IMS.ACBLIB must be used exclusively. The utility can only be executed using
an ACB library which is not concurrently allocated to an active IMS system.

IMS.ACBLIB is modified and cannot be used for any other purpose during execution
of this program. IMS.ACBLIB is a partitioned data set and carries required linkage
information in the directory. You can use the operating system (IEHMOVE) and data
set (IEBCOPY) utilities for maintenance purposes.

Do not add FP DBDs to the active ACBLIB between an abnormal termination and
/ERE. FP DBDs added to the active ACBLIB after abnormal termination of IMS are
inaccessible after /ERE.

When specifying BUILD PSB=ALL on a SYSIN control statement, all PSBs must
reside in a single PSBLIB. No concatenated PSBLIBs will be acknowledged on the
IMS DD statement.

Input and Output

Eigure 35 on page 151 shows the functional relationship of the 1/0 data sets and
their naming requirements.

150 IMS/ESA V6 Utilities Ref: System



ACBGEN

SYSUT4
SYSUT3
e COMPCTL
IMSVS. Utility IEBCOPY
DBDLIB Data Sets Control
Statement
Application
IMSVS. . Control Blocks IMSVS.
PSBLIB " Maintenance ACBLIB
DFSUACBO
— / \ SYSPRINT
Control Messages
Statements

Figure 35. Application Control Blocks Maintenance Utility

ACBGEN Procedure

The following procedure is created as a part of system generation. It is placed into
the IMS.PROCLIB procedure library by stage two of IMS system definition.

Eigure 36 shows the procedure for ACBLIB maintenance.

// PROC SOUT=A,COMP=,RGN=256K,SYS2=

//G EXEC PGM=DFSRRCOO,PARM="'UPB,&COMP',REGION=&RGN
//SYSPRINT DD SYSOUT=&SOUT

//STEPLIB DD DSN=IMS.&SYS2 RESLIB,DISP=SHR

//DFSRESLB DD DSN=IMS.&SYS2 RESLIB,DISP=SHR

//IMS DD DSN=IMS.&SYS2 PSBLIB,DISP=SHR

// DD DSN=IMS.&SYS2 DBDLIB,DISP=SHR

//IMSACB DD DSN=IMS.&SYS2 ACBLIB,DISP=0LD

//SYSUT3 DD UNIT=SYSDA,SPACE=(80,(160,100))

//SYSUT4 DD UNIT=SYSDA,SPACE=(256,(100,100)),DCB=KEYLEN=8
//COMPCTL DD DSN=IMS.&SYS2 PROCLIB(DFSACBCP),DISP=SHR

Figure 36. ACBLIB Maintenance Procedure

In the procedure above, the high level qualifier of the IMS data sets is IMS. This is
the default provided by IMS generation. However, if the default value was not used
in IMS generation at your installation, the high level qualifier for the IMS data set
names might not be IMS.

Invoking the Procedure

The following is a sample of the JCL statements that can be used to invoke the
ACBGEN procedure.

//ACBGEN ~ JOB MSGLEVEL=1

// EXEC ACBGEN

//SYSIN DD *
BUILD PSB=(MYPSB)

Chapter 3. Application Control Blocks Maintenance Utility 151



ACBGEN

The ACBGEN procedure uses the following symbolic variables:

SOUT=
Specifies the SYSOUT class. The default is A.

COMP=
PRECOMP,POSTCOMP, in any combination, cause the required in-place
compression. The default is none.

RGN=
Specifies the region size for execution of the ACB utility. This depends on the
size of the blocks to be generated and typically varies from 100 to 150KB. The
default is 256KB.

SYS2=
Specifies an optional second-level dsname qualifier for those data sets which
are designated as “Optional Replicate” in an XRF complex. When specified, the
operand must include a trailing period and be enclosed in quotes, for example:

SYS2="IMSA."

EXEC Statement

The first part of the EXEC statement must be in the form:
PGM=DFSRRC0O0

A parameter field must be in the form;
PARM="'UPB, PRECOMP, POSTCOMP'

where PRECOMP requests the IMS.ACBLIB data set be compressed before blocks
are built, and POSTCOMP requests compression after the blocks are built. 'UPB'
indicates that the block maintenance utility is to receive control. This parameter is
required. PRECOMP and POSTCOMP are optional and can be used in any
combination.

DD Statements

STEPLIB DD
Points to IMS.RESLIB, which contains the IMS/ESA nucleus and required action
modules. If STEPLIB is unauthorized by having unauthorized libraries
concatenated to IMS.RESLIB, you must include a DFSRESLB DD statement.

DFSRESLB DD
Points to an authorized library which contains the IMS SVC modules. For IMS
batch, RESLIB and any data set that is concatenated to it on the DFSRESLB
DD statement must be authorized through the Authorized Program Facility
(APF). This DD statement provides an authorized library for the IMS SVC
modules, which must reside in an authorized library. The JOBLIB or STEPLIB
statement need not be authorized for IMS batch.

SYSPRINT DD
Defines the output message data set.

IMS DD
Defines the IMS.PSBLIB and IMS.DBDLIB data sets.

IMSACB DD
Defines the IMS.ACBLIB data set.

Restriction: This data set is modified and cannot be shared with other jobs.

152 IMS/ESA V6 Utilities Ref: System



ACBGEN

SYSUT3 DD
Defines a work data set that is required if either PRECOMP or POSTCOMP is
specified on the EXEC statement.

Related Reading: For more information about space allocation requirements,

refer to IMS/ESA Utilities Reference: Database Manageifor space allocation

requirements.

SYSUT4 DD
Same function as SYSUTS3.

COMPCTL DD
Defines the control input data set to be used by IEBCOPY if PRECOMP or
POSTCOMP is specified.

If both PRECOMP and POSTCOMP are requested on the EXEC statement
parameters, this data set must be capable of being closed with a reread option.

Recommendation:lIt is suggested that this data set reference a member of
IMS.PROCLIB containing the following required control statement:

//COMPCTL DD DSNAME=IMS.PROCLIB(DFSACBCP),
DISP=SHR

SYSIN DD
Defines the input control statement data sets. They can reside on a tape
volume, direct-access device, card reader, or be routed through the input
stream. The input can be blocked as multiples of 80. During execution, this
utility can process as many control statements as required.

DFSACBCP Control Statement

The following control statement is created as a part of system generation and is
placed in the IMS.PROCLIB procedure library by stage two of IMS system
definition.

The ACBGEN procedure uses DFSACBCP to compress ACBLIB.
COPY INDD=IMSACB,OUTDD=IMSACB

Utility Control Statements

The following guidelines apply to the utility control statements for ACBGEN:

» The utility control statements for this program are coded with one restriction: To
continue a statement, enter a non-blank character in column 72 and begin the
statement on the next line starting in column 16.

» A statement is coded as a card image and is contained in columns 1 to 71.
* The control statement can optionally contain a name, starting in column 1.
* The operation field must be preceded and followed by one or more blanks.

* The operand is composed of one or more PSB/DBD names and must also be
preceded and followed by one or more blanks.

» Commas, parentheses, and blanks can be used only as delimiting characters.

» Comments can be written following the last operand of a control statement,
separated from the operand by one or more blanks.

Chapter 3. Application Control Blocks Maintenance Utility 153



ACBGEN

154 IMS/ESA V6 Utilities Ref: System

ACB Maintenance Utility Syntax: Build format

»—L—_I—BUILD—PSB- |_( Y __psbname ) | >
name ALL

| 2

LDBD=( Y __dbdname )J

ACB Maintenance Utility Syntax: Delete Format

nare L — J
)

»
>

PSB=(———psbname

A\
A

LJBD=( 3

dbdname ) J

BUILD

Indicates that blocks are to be built for the named PSBs which refer to the
named DBDs.

DELETE

Indicates that blocks are to be deleted from ACBLIB. The named PSBs and all
PSBs that refer to the named DBDs are deleted.

PSB=ALL

Means blocks are to be built for all PSBs that currently reside in
IMS.PSBLIB. When this function is specified, all PSBs and DBDs (and
any other modules) are deleted from the ACBLIB dataset and their
space is made available for reuse. Then an ACBGEN is executed for
every PSB in PSBLIB. Do not use this operand with a DELETE
statement. You use this operand to create an initial IMS.ACBLIB.

Requirement: When you specify BUILD PSB=ALL on a SYSIN control
statement, all PSBs must reside in a single PSBLIB. No concatenated
PSBLIBs will be acknowledged on the IMS DD statement.

PSB=(psbname)

Means blocks are to be built or deleted for all PSBs named on this
control statement. As many of this type of control statement as required
can be submitted. This operand is normally used to add a new PSB to
IMS.ACBLIB or delete a PSB no longer in use. You can omit the
parentheses if you supply a single operand.

DBD=(dbdname)

Means blocks are to be built or deleted for this DBD and for all PSBs
which reference this DBD either directly or indirectly through logical
relationships. The DBD to be built must already exist in IMS.ACBLIB.



ACBGEN

The referencing PSBs must already exist in IMS.ACBLIB. PSBs newly
added to IMS.PSBLIB must be referenced by PSB= operands. Because
deleting a PSB does not delete any DBDs referenced by the PSB, this
operand can be used to delete specific DBDs. However, deleting or
building a DBD causes every PSB in IMS.ACBLIB that references the
named DBD to be rebuilt or deleted based on the request type. You can
omit the parentheses if you supply a single operand.

Every PSB processed by this program generates a member in the
IMS.ACBLIB data set. DBDs referenced by PSBs generate a member
the first time the specific DBD is processed or any time a DBD name
appears on a control statement. All PSBs that reference the same DBD
carry information in their directory entries to connect the PSB to the
referenced DBDs.

Logical DBDs do not generate a member in IMS.ACBLIB and cannot be
referenced on BUILD or DELETE control statements.

When a DBD is replaced in IMS.DBDLIB, it must also be included in a BUILD DBD
control statement. This is the only valid way the DBD can be replaced in
IMS.ACBLIB without doing a BUILD PSB=ALL.

If a BUILD PSB is performed that references a modified DBD on DBDLIB, the PSB
replaced on ACBLIB will contain the updated version of the DBD. If this BUILD PSB
occurs before a BUILD DBD for the changed DBD, ACBLIB will contain PSBs with
different versions of the DBD. The PSBs specified in the BUILD PSB will contain
the updated DBD, while those not built will reference the old DBD. When a DBD for
a PSB on ACBLIB does not match the accessed database, the results will be
unpredictable. (For example, U852 abend occurs because segment codes have
been added or deleted in the changed DBD). Therefore, when DBDGEN is run for
later use, do not build a PSB that refers to the changed DBD unless the database
reflects the change.

When a physical DBD is changed and is referenced in a BUILD DBD statement, all
physical DBDs that are logically related to the one that was changed (including
primary indexes and secondary indexes) must also be referenced in a BUILD DBD
statement. However, DBDs that are logically related to these DBDs do not need to
be rebuilt.

Eigure 37 on page 156 is an example of physical databases, where A is the

changed DBD. The following relationships exist:
* B and C are logically related to A.

* D is logically related to B.

» E is logically related to C.

* D and E are not referenced in the BUILD DBD statement because they are not
logically related to A.

Chapter 3. Application Control Blocks Maintenance Utility 155



ACBGEN

Figure 37. Example of Logically Related Physical Databases

Managing Dynamic Option (DOPT) PSBs

Using dynamic option (DOPT) PSBs requires concatenation of the following ACBLIB
data sets:

» A primary ACBLIB data set to contain blocks for all nondynamic PSBs
« A DOPT ACBLIB data set to contain blocks for all dynamic option PSBs

The primary ACBLIB data sets is the first DD statement of the concatenation. To
BUILD a PSB or DBD into the concatenated data sets, supply only one DD
statement to the ACB Maintenance utility.

At system initialization time, all nondynamic PSBs and all DBDs must have been
built into either the primary or DOPT ACBLIB data sets.

By transaction schedule time, the DOPT PSBs being scheduled must be built into
the DOPT ACBLIB data sets. Never build DOPT PSBs into the primary ACBLIB
data sets.

If all PSBs in the system are DOPT PSBs, the primary ACBLIB should be a dummy
PDS data set. The DOPT ACBLIB should contain blocks for all DBDs and PSBs.
Set the DIRCA size parameter in the BMP, MPP, or IFP JCL.

If some, but not all, PSBs in the system are DOPT PSBs, both ACBLIB data sets
will contain blocks for DBDs and PSBs. Remember, when you BUILD a PSB into
one ACBLIB data set, the blocks for the DBDs referenced by the PSB are also built
into that data set. If the DBD was already built into another ACBLIB data set, you
will have two sets of blocks for the DBD. When DL/l does a BLDL to use the blocks
for the DBD, it uses the set of blocks in the primary ACBLIB.

During the termination process of a program using DOPT PSBs, the PSBs are
deleted from the PSB pool.

Related Reading:For further information about using DOPT, refer to the section on
the APPLCTN Macro in i : initi

Error Processing

The ACBGEN procedure returns the following codes:
Code Meaning

0 Successful completion of all operations

156 IMS/ESA V6 Utilities Ref: System



ACBGEN

4 One or more warning messages issued
8 One or more blocks could not be built
16 Program terminated due to severe errors

Examples

Example 1

Example 2

Example 3

This example creates blocks for all PSBs that currently reside in IMS.PSBLIB. All
blocks currently existing in IMS.ACBLIB are deleted and their space is reused. This
option will normally be used for initial creation of the IMS.ACBLIB data set. If space
is not yet allocated for ACBLIB, there should be a space parameter and a
DISP=NEW on the IMSACB DD statement.

//BLDBLKS JOB 1,1,MSGLEVEL=(1,1)
/1*
//STEP EXEC ACBGEN,SOUT=A
//SYSIN DD *

BUILD PSB=ALL
/*

This example creates blocks for PSB1, PSB2, and PSB3. All other PSBs in
IMS.ACBLIB remain unchanged. If any DBDs referenced by these PSBs do not
exist in IMS.ACBLIB, they are added. In addition, DBD5 and DBD6 are deleted from
ACBLIB. IMS.ACBLIB is compressed after the blocks are built, and deletions are
performed.

//BLDBLKS JOB 1,1,MSGLEVEL=(1,1)
/1%
//STEP EXEC ACBGEN,SOUT=A,COMP=POSTCOMP
//SYSIN DD *
BUILD PSB=(PSB1,PSB2,PSB3)
DELETE DBD=(DBD5,DBD6)
/*

This example deletes PSB1 from the IMS.ACBLIB data set and causes all PSBs in
the IMS.ACBLIB data set that reference DBD4 to have their blocks rebuilt. If PSB1
referenced DBDA4, it will not be rebuilt, since PSB1 had just been deleted from
IMS.ACBLIB. PSB1 is not deleted from IMS.PSBLIB. The IMS.ACBLIB is
compressed before and after the blocks have been built.

//BLDBLKS JOB 1,1,MSGLEVEL=(1,1)
/1*
//STEP EXEC ACBGEN,SOUT=A,COMP="'PRECOMP,POSTCOMP'
//SYSIN DD *
DELETE PSB=PSB1
BUILD DBD=DBD4
/*

Chapter 3. Application Control Blocks Maintenance Utility 157



ACBGEN

158 IMS/ESA V6 Utilities Ref: System



Part 2. Service Utilities

Chapter 4. Dynamic Allocation Macro (DFSMDA) .
Restrictions. . .o

Input and Output.
IMSDALOC Procedure

PROC Statement .
JCL Parameter Description .
Step ASSEM .

DD Statements
Step BLDMBR
Step LNKEDT.

DD Statements
Invoking the Procedure

Macro Statements .
Examples

Example 1 .
Example 2 .
Example 3 .
Example 4 .
Example 5 .

Chapter 5. Security Maintenance Ut|||ty (DFSISMPO)
Input and Output Flow. Co e
Restrictions.

Security Options .

LTERM Security .

Password Security .

Transaction Command Securlty
IMS Resource Access Security
Sign-on Verification Security

Resource Access Control Facility (RACF)
Command Authorization Exit Routine .
IMS Application Resource Access Security .
SECURITY Procedure.

PROC Statement .
JCL Parameter Description .
Step S EXEC Statement .
DD Statements
Step C .o

DD Statements
Step L .

DD Statements
Invoking the Procedure

Utility Control Statements
Output

Security- Status Reports .

Examples

Example 1 .
Example 2 .
Example 3 .
Example 4 .
Example 5 .
Example 6 .
Example 7 .

© Copyright IBM Corp. 1974, 2000

. 161
. 163
. 163
. 164
. 164
. 164
. 165
. 165
. 165
. 165
. 165
. 165
. 166
. 171
. 171
. 172
. 172
. 172
. 173

. 175
. 176
. 176
. 177
. 177
. A77
. A77
. 178
. 178
. 178
. 178
. 179
. 179
. 180
. 181
. 181
. 182
. 182
. 183
. 183
. 183
. 183
. 183
. 185
. 186
. 186
. 186
. 186
. 187
. 187
. 188
. 189
. 189

159



160

Example 8 .

Chapter 6. Online Change Utlllty (DFSUOCUO)

Restrictions.
INITMOD Procedure
PROC Statement .
DFSMREC Control Statement
OLCUTL Procedure.
PROC Statement
EXEC Statement.
DD Statements
Invoking the Procedure

Chapter 7. Dynamlc SvC Ut|||ty (DFSUSVCO)
Restrictions. .
Input and Output.
Error Processing .
JCL Requirements .
DD Statements
Example .

IMS/ESA V6 Utilities Ref: System

. 189

. 191
. 191
. 192
. 192
. 193
. 194
. 194
. 195
. 195
. 196

. 199
. 199
. 199
. 199
. 200
. 200
. 200



Chapter 4. Dynamic Allocation Macro (DFSMDA)

Use the Dynamic Allocation macro (DFSMDA) to build a member (that is, one or
more parameter lists) for naming data sets that can participate in dynamic allocation
and deallocation.

Related Reading:For more information about IMS.RESLIB, refer to IMS/ESA
| T I - T [ erfication.

IMS users and CICS users can dynamically allocate IMS databases. To use
DFSMDA you must catalog all specified database data sets. However, you do not
need to initially allocate them through control region JCL.

For Fast Path databases, if the database data sets to be allocated are registered in
DBRC, the information required to dynamically allocate the data sets is obtained
from DBRC. You do not need to supply DFSMDA members for them. When the
dynamic allocation information is obtained from DBRC, the DISP= used to allocate
the data sets is either DISP=OLD or DISP=SHARE depending on the following:

* If SHARELVL=0 or RECONS, use DISP=0OLD.
* If SHARELVL=1, 2, or 3 orRECONS, use DISP=SHARE.

Related Reading: For more information on data sharing levels, refer to the

CHANGE.DB command in IMS/ESA DBRC Guide and Referencd.

The priority of allocation information is shown in ffable d.

Table 9. Priority of Allocation Information

DBRC DD Statement DFSMDA Member
DEDBs and MSDBs 1 2 3
All others 1 2

Database data sets specified in DFSMDA are allocated at different times depending
on whether you are running in an IMS DB/DC, IMS Batch, CICS/MVS 2.1, or
CICS/ESA 3.1 environment. The environment requirements are:

* IMS DB/DC database data sets are allocated either when a /START command is
issued for the database or when an IMS application program is scheduled. You
deallocate the data set by the /DBR command. If a database data set is specified
in the JCL, it is allocated by MVS during control region startup. You can
deallocate it with the /DBR command and reallocate it with the /START command.

» IMS Batch database data sets are allocated near the beginning of the job step,
before the batch application starts execution.

Dynamic allocation is always attempted for all non-JCL allocated databases
defined in the PSB being executed. This is performed by searching the
JOBLIB/STEPLIB concatenation for DFSMDA members, unless dynamic
allocation is disabled (for batch only) by the presence of the NODYNALLOC
statement in your DFSVSMxx member.

If a batch job uses a PSB with more database PCBs than are necessary for a
particular job, you can avoid dynamic allocation of the unnecessary databases
while still maintaining a library of DFSMDA members for all databases belonging
to the PSB. You have two methods of doing this:

© Copyright IBM Corp. 1974, 2000 161



Dynamic Allocation

— You can include the NODYNALLOC statement in your DFSVSMxx member
and include DD statements for only the necessary databases in your job JCL.
The library of DFSMDA members does not need to be removed from the
JOBLIB/STEPLIB concatenation because the NODYNALLOC statement
disables batch dynamic allocation.

— You can maintain separate libraries of DFSMDA members, which can be
included or excluded from the JOBLIB/STEPLIB concatenation as needed.
DFSMDA members need not be kept in your IMSVS.RESLIB.

For example, you can maintain one main library of DFSMDA members for all
the databases for a PSB and maintain several subset libraries. You
concatenate only the library that is appropriate for the job being run. Dynamic
allocation searches the entire JOBLIB/STEPLIB concatenation for DFSMDA
members, so you must remove or alter all libraries that contain undesired
members.

If the databases for which your program has update intent have logical
relationships or secondary indexes, those additional databases containing the
logical relationships or secondary indexes can also be allocated, whether by JCL
or DFSMDA members. To cause dynamic allocation of a logically related
database, change the PROCOPT to indicate update intent. To dynamically
allocate a secondary index, change the PROCOPT to indicate update intent or
include a PCB with PROCSEQ-= for the secondary index.

If the PCB specifies a PROCOPT that does not indicate update intent, no intent
will be propagated to a logically related database or to a secondary index, and
dynamic allocation will not be attempted for either of these related databases.

» CICS database data sets are allocated when an application program issues a
schedule call for the PSB. Deallocation occurs, for example, during the
processing of STOP and RECOVERDB commands issued against the database.

You can dynamically allocate online log data sets (OLDS), write ahead data sets
(WADS), and system log data sets (SLDS) if they are named in the DFSMDA

macro. The DFSMDA macro must be defined to permit SLDS input to IMS to restart
in MVS.

When you start an OLDS using the /START command, the OLDS must be defined in
the DFSMDA macro, even if it is allocated in JCL.

Related Reading: For descriptions of how the data sets specified in the DFSMDA
macro are treated by the /START, /STOP, and /DBR commands, refer to

Dperator’s Referencd.

The IMS Monitor data set can also participate in dynamic allocation and
deallocation, if the data set is on tape and named in the DFSMDA macro. The IMS
Monitor data set is allocated when it is started with the /TRACE ON command and
deallocated when it is stopped with the /TRACE OFF command. It need not be initially
allocated through JCL. It must not be cataloged, regardless of the allocation
method.

Recommendation:If you use the multiple DEDB area data set facility, it is
recommended that you register all data sets belonging to that area in either DBRC
or DFSMDA.

162 IMS/ESA V6 Utilities Ref: System



Dynamic Allocation

The specified areas are allocated either when a /START command is issued for the
area or when an application program attempts to use the area. The area is
deallocated by /STOP AREA. Multiple areas can be deallocated by /STOP ADS.

In an XRF environment, all database and area data sets must be dynamically
allocated.

In this Chapter:

Restrictions

The following restrictions apply when using the Dynamic Allocation macro:

» If you are going to dynamically allocate a database, all DD statements referenced
in the DMB for the database must be defined in the TYPE=DATASET, DDNAME=
parameter. A database cannot be partially allocated by JCL and partially allocated
by a dynamic allocate member.

» Because dynamic allocation cannot resolve logical relationships between DBDs,
you must define a dynamic allocation member for each DBD in a logically related
database. For example, a HIDAM database is composed of two logically related
DBDs, the index DBD and the data area DBD. Each DBD in this example must
have a dynamic allocation member with the same name as the DBD.

* The Batch Backout utility (DFSBBOO00) is the only IMS utility that is supported for
dynamic allocation.

* A database that is generated as a DFSMDA member cannot be given a name
that is a duplicate of any label name that is generated during the assembly step
of the DFSMDA job. IMS generates a label using the database name during this
step, and an error occurs if that label name already exists in code invoked by
DFSMDA. This restriction does not apply to data set names.

* A database that is generated as a DFSMDA member cannot be defined with a
DDNAME that is identical to the DDNAME defined for another database during
the same assembly step of the DFSMDA job. If more than one database must be
defined with the same DDNAME (as in the case of secondary indexes), the
DFSMDA job must be run separately for each required occurrence of the
DDNAME.

Input and Output

The input to the DESMDA macro consists of statements as explained in [Macrd

The output from the DFSMDA macro consists of text decks and linkage editor
statements that are used to create load modules in IMS.RESLIB. Batch load
modules must be created within IMS.RESLIB. Online load modules can be created
either in IMS.RESLIB or in an unauthorized library.

The members for dynamic allocation can be changed simply by regenerating
parameter lists with new input.

Chapter 4. Dynamic Allocation Macro (DFSMDA) 163



Dynamic Allocation

Unless it is a dynamic allocation member, no member that has the same name as a
database should be link-edited into IMS.RESLIB.

IMSDALOC Procedure

The IMSDALOC procedure is created as a part of system generation and is placed
into the IMS.PROCLIB library by stage two of IMS/ESA system generation.

This is a three step procedure for generating the list of databases and DEDB data
areas that are to be dynamically allocated.

IMSDALOC assumes:
* Input is read from SYSIN.

» Each database or DEDB data set described in the input has a corresponding
module placed in the dynamic allocation member data set.

* The name given to each module is the name of the database or DEDB data area
described in the input.

PROC Statement

m shows the JCL for the IMSDALOC procedure. The parameters are
described in ICL Parameter Description].

// PROC
//ASSEM  EXEC
//SYSLIB DD
// DD
//SYSUT1 DD

SOUT=A, SYS2=
PGM=ASMA90 , PARM="ALIGN,DECK,NOOBJECT"
DSN=IMS.&SYS2 MACLIB,DISP=SHR
DSN=SYS1.MACLIB,DISP=SHR
UNIT=SYSDA,SPACE=(CYL, (10,5))

//SYSPUNCH DD
//

//SYSPRINT DD
//BLDMBR EXEC
//SYSPRINT DD
//SYSUT2 DD
//

//SYSIN DD
//LNKEDT EXEC
//

//SYSUTL DD
//SYSLIB DD
//SYSPRINT DD
//SYSLMOD DD
//0BJMOD DD
//SYSLIN DD
//

DSN=&0BJMOD, DCB= (RECFM=FB, LRECL=80,BLKSIZE=400) ,
SPACE=(400, (100,100)) ,UNIT=SYSDA,DISP=(NEW, PASS)
SYSOUT=&S0UT
PGM=IEBUPDTE, PARM="NEW' ,COND=(7,LT,ASSEM)

DUMMY
DSN=&TEMPPDS,UNIT=SYSDA,DISP= (NEW, PASS,DELETE),
SPACE=(80, (1000,500,10)) ,DCB= (RECFM=F ,BLKSIZE=80)
DSN=+.ASSEM.SYSPUNCH,DISP=(0OLD,DELETE,DELETE)
PGM=IEWL,PARM="'LIST,XREF,LET",
COND=((7,LT,ASSEM), (3,LT,BLDMBR))

UNIT=SYSDA, SPACE=(1024, (100,50))

DUMMY

SYSOUT=8S0UT

DSN=IMS.&SYS2 RESLIB,DISP=SHR
DSN=&TEMPPDS,DISP=(0OLD,DELETE,DELETE)
DSN=&TEMPPDS (LNKCTL) ,DISP=(OLD,DELETE,DELETE),
VOL=REF=+.0BJMOD

Figure 38. JCL for the IMSDALOC Procedure

Recommendation:The SPACE parameter should be increased to accommodate
large volumes of TYPE=DATABASE statements.

JCL Parameter Description

SOUT=
Specifies the class assigned to SYSOUT DD statements.

SYS2=
Specifies an optional second level dsname qualifier for those data sets which

164 IMS/ESA V6 Utilities Ref: System



Step ASSEM

Step BLDMBR

Step LNKEDT

Dynamic Allocation

are designated as “Optional Replicate” in an XRF complex. When specified, the
operand must be enclosed in quotes and must include a trailing period; for
example, SYS2="'IMSA.".

Step ASSEM is the assembly step.

Related Reading:For information on assembly steps, refer to High Level Assembler
Programmer’s Guide.

DD Statements

SYSIN DD
Defines the input data sets to step C. These DD statements must be provided
when invoking the procedure.

Related Reading:For information on this step, refer to the IEBUPDTE utility in
MVS/DFP Utilities.

Step LNKEDT is the link-edit step.

Related Reading:For information on linkage-editors, refer to MVS/DFP Linkage
Editor and Loader.

DD Statements

SYSLMOD DD
Defines an output partitioned data set for the linkage editor.

For batch execution, the data set must be concatenated with IMS.RESLIB, and
can be either an authorized library, or an unauthorized data set. To use an
authorized library, you must include the DFSRESLB DD statement in the batch
execution procedure.

For online execution, or in a DBCTL environment, the data set can be an
authorized data set included in the IMS.RESLIB concatenation, or an
unauthorized data set. To use an unauthorized data set, you must define it to
the control region by adding an IMSDALIB DD statement to the online or
DBCTL execution procedure. This unauthorized data set will then take
precedence over the IMS.RESLIB concatenation when seeking a dynamic
allocation parameter list or member.

Invoking the Procedure

The dynamic allocation macro statements are supplied as input to the IMSDALOC
procedure and executed as an MVS job.

Requirement:A JOB statement (defined by the using installation), an EXEC
statement, and DD statements that define the input and output data sets are
required.

The following JCL statement invokes the IMSDALOC procedure.

//DALOC  JOB
/1%
//STEP  EXEC IMSDALOC

Chapter 4. Dynamic Allocation Macro (DFSMDA) 165



Dynamic Allocation

/1%

//SYSIN DD =

DFSMDA TYPE=

END
/*
EXEC
Should be in this form:
//STEP EXEC IMSDALOC
SYSIN DD

Defines the input data set containing the DFSMDA macro statements.

Macro Statements

166

The DFSMDA macro is coded as an MVS macro. The statement label is optional,
the macro “DFSMDA” is coded after one or more blanks, and additional parameters
are separated by blanks. MVS continuation rules apply.

The DFSMDA macro has several statement types (as indicated by the TYPE=
parameter), each of which uses different additional parameters. Code the
statements types as follows:

1.
2.

3.
4.

One TYPE=INITIAL statement to start the parameter list build

As many TYPE=DATABASE, TYPE=DATASET, and TYPE=FPDEDB statements
as necessary

One TYPE=DFSDCMON if the IMS Monitor data set is to be included
One TYPE=FINAL to end the list

The maximum number of TYPE=DATABASE statements allowed is 250.
Explanations of all the DFSMDA statement types follow:

TYPE=INITIAL Statement

This statement indicates the start of a parameter list build and is required. No
other parameters are valid on a TYPE=INITIAL statement. The format of this
statement is:

»>—DFSMDA—TYPE=INITIAL ><

TYPE=DATABASE Statement

This statement specifies the start of the definition for a database to participate
in dynamic allocation and deallocation: one or more TYPE=DATASET
statements should follow. (Do not use this statement for a DEDB area.) The
format of the statement is:

»>—DFSMDA—TYPE=DATABASE , DBNAME=dbname >

DBNAME=
Specifies the DBD name of a database whose data sets are to be
dynamically allocated. This name is used as a member name in
IMS.RESLIB to identify this database parameter list. Care should be taken
to ensure that this name does not conflict with already existing members in
IMS.RESLIB. This includes, but is not limited to, IMS modules and
user-supplied exit routines.

IMS/ESA V6 Utilities Ref: System



Dynamic Allocation

TYPE=FPDEDB Statement
This statement defines an area within a data entry database (DEDB). One
TYPE=FPDEDB statement is required for each area to be specified. The format
of this statement is:

»»>—DFSMDA—TYPE=FPDEDB |_ _| >
,DBNAME=areaname

DBNAME=
Specifies the DBD name of the DEDB in which the specified area resides.
This parameter is optional, and is used for documentation purposes only.
For DEDB areas, the IMS.RESLIB parameter list is not named with the
database name, but rather with the area’s ddname.

TYPE=DATASET Statement
This statement defines either a data set within the database specified in the
previous TYPE=DATABASE statement or a DEDB area. One complete
TYPE=DATASET is used for each data set or area data set defined. Every data
set within a database to be dynamically allocated and deallocated must be
named in a TYPE=DATASET statement. When defining DEDB areas, a
TYPE=FPDEDB statement must precede each TYPE=DATASET statement.

If the data set within a database identifies a secondary index data set shared
with another database, theDFSMDA members for the two databases must be
generatedin separate assemblies.

The format of this statement is:

OLD
»>—DFSMDA—TYPE=DATASET , DSNAME=dsname ,DDNAME=ddname— ,DISP= SHR:|—><

DSNAME=
Specifies the name of the data set. The name can be any combination of
simple and compound names valid in JCL, except the name cannot contain
special characters.

DDNAME=
Specifies the name of the DD statement defining this data set. This name is
the same as that used in the DATASET or AREA statement of the
DBDGEN.

For multiple ADSs, this name is the same as the ADDN name registered in
the ADS RECON data set.

DISP=
Specifies the disposition of this data set when allocated. The default is
OLD.

TYPE=DFSDCMON Statement
This statement defines the dynamic allocation parameter list for the IMS Monitor
data set. The format of this statement is:

\/

»>—DFSMDA—TYPE=DFSDCMON , DSNAME=dsname , DDNAME=IMSMON

Chapter 4. Dynamic Allocation Macro (DFSMDA) 167



Dynamic Allocation

TAPE 4 4096
»—,UNIT= |—_unit__-| ,BUFNO= [_“__1 ,BLKSIZE= I__nnnn__—| ><

DSNAME=
Specifies the name of the data set, which must not be cataloged if the unit
defines a TAPE device. However, if UNIT=DASD is specified, then the data
set must be cataloged and available. The nhame may be any combination of
simple and compound names valid in JCL, but must not contain special
characters.

DDNAME=IMSMON
Is the required value for DDNAME.

UNIT=
Specifies the unit for the DC Monitor data set. If the data set resides on a
direct access device, UNIT=DASD must be specified and the data set must
be cataloged. Otherwise, the value of UNIT= can be the name of any tape
device valid to the installation. The default is UNIT=TAPE.

BUFNO=
Specifies the number of buffers for the IMS Monitor data set. Valid numbers
are from 2 to 9, inclusive; the default is 4.

BLKSIZE=
Specifies the block size for the IMS Monitor data set. The default is 4096.
This value is replaced with a larger value at initialization time if the value is
not large enough for the IMS Monitor log records. In addition, the BLKSIZE
is rounded up to a double word boundary.

TYPE=RECON Statement

This statement defines the dynamic allocation parameter list for database
recovery control (DBRC).

The format of this statement is:

Y
A

[
»»—DFSMDA—TYPE=RECON, DSNAME=dsname ,DDNAME=RECONn ,WAIT= YES

DSNAME=
Specifies the name of the data set. The name can be any combination of
simple and compound names valid in JCL, except that it cannot contain
special characters.

DDNAME=
Specifies the name of the DD statement defining this data set. This name
must be RECON1, RECON2, or RECONS.

WAIT=
If YES is specified on any of the TYPE=RECON statements (RECON1,
RECON2, RECONBR), a wait is issued for any of the RECONSs found to be
offline during DBRC initialization. WAIT=NO is the default. Omitting the
WAIT= parameter or specifying WAIT=NO causes dynamic allocation to fail
in the event that a RECON data set is offline during DBRC initialization.

TYPE=OLDS Statement

This statement defines the dynamic allocation parameter list for the online log
data set (OLDS).

168 IMS/ESA V6 Utilities Ref: System



Dynamic Allocation

There must be as many DFSMDA macros as there are OLDS.

Requirement: If you use dual logging, DFSMDA member names are required
for both the primary and secondary OLDS.

The format of this statement is:

»>—DFSMDA—TYPE=0LDS ,DSNAME=dsname , DDNAME=DFSOLxnn ><

DSNAME=
Specifies the name of the data set. The name can be any combination of
simple and compound names valid in JCL, except that it cannot contain
special characters.

DDNAME=
Specifies the OLDSs to be allocated. If the OLDSs are dual, there must be
a pair of macros, one with the ddname of the primary OLDS and the other
with the ddname of the secondary OLDS (for example, DFSOLPO1 and
DFSOLSO01). The data set must be cataloged. Substitute P for x when
declaring a primary data set. Substitute S for x when declaring a secondary
data set. Values from 00 through 99 can be specified for nn.

TYPE=SLDS Statement
This statement defines the dynamic allocation parameter list for the SLDS.
SLDSs are dynamically allocated when required as input for restart. A single
DFSMDA member with name IMSLOGR must be created to specify the UNIT
information required for allocation. All SLDSs to be used as input to restart must
reside on the same device type.

The format of this statement is:

»—DFSMDA—TYPE=SLDS,UNIT=device type,DDNAME=IMSLOGR ><

UNIT=
Specifies the device required for allocation. All SLDSs used as input for
restart must reside on the same device type. This applies to both the
primary and secondary data sets when dual logging is used. The device
type can be tape or DASD.

DDNAME=IMSLOGR
Is the required value for DDNAME.

TYPE=SYSDS Statement
This statement defines the dynamic allocation parameter list for the SLDS.

The format of this statement is:

»»—DFSMDA—TYPE=SYSDS , DDNAME=MODSTAT , DSNAME=dsname

A\
A

DDNAME=MODSTAT
Is the re